

global environmental solutions

Supplementary Contamination Assessment Portion of Lot 6 in DP564939 Norman Griffiths Sportsground, Lofberg Road, West Pymble, NSW

Report Number 610.17191-R02

25 July 2017

Ku-ring-gai Council 818 Pacific Highway Gordon NSW 2073

Version: v1.0

Supplementary Contamination Assessment

Portion of Lot 6 in DP564939

Norman Griffiths Sportsground, Lofberg Road, West Pymble, NSW

PREPARED BY:

SLR Consulting Australia Pty Ltd ABN 29 001 584 612 2 Lincoln Street Lane Cove NSW 2066 Australia (PO Box 176 Lane Cove NSW 1595 Australia) +61 2 9427 8100 +61 2 9427 8200 sydney@slrconsulting.com www.slrconsulting.com

> This report has been prepared by SLR Consulting Australia Pty Ltd with all reasonable skill, care and diligence, and taking account of the timescale and resources allocated to it by agreement with the Client. Information reported herein is based on the interpretation of data collected, which has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of Ku-ring-gai Council. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from SLR.

SLR disclaims any responsibility to the Client and others in respect of any matters outside the agreed scope of the work.

DOCUMENT CONTROL

Reference	Date	Prepared	Checked	Authorised
610.17191-R02-v0.1	19 June 2017	Craig Cowper		
610.17191-R02-v1.0	25 July 2017	Craig Cowper		Craig Cowper

Executive Summary

SLR Consulting Pty Ltd (SLR) was engaged by Ku-ring-gai Council to undertake a supplementary contamination assessment for Norman Griffiths Sportsground, Lofberg Road, West Pymble, NSW (the site).

The assessment was undertaken in accordance with SLR's offer of services dated 11 April 2017 (ref: 610.17191-P02-v1.0 20170411).

SLR understands the following:

- The site is comprised of a portion of Lot 6 in DP564939, specifically the turfed playing field portion (excluding the adjacent amenities building), and covers an area of approximately 9,500m²;
- Council is considering changing the playing field surface from the existing natural turf, to a synthetic grass; and
- A stage 1 preliminary site investigation undertaken by SLR, identified two areas of environmental concern (AEC) on the site, resulting from potential uncontrolled filling.
- Council has requested a supplementary assessment of these AEC, to inform feasibility of changes to the playing field surface.

The objectives of this project were to:

- Assess the potential for contamination to be present on the site in the identified AEC, which may
 present an unacceptable human health exposure risk, in the context of the resurfacing works, and
 an open space/recreational land use scenario; and
- Provide recommendations for additional investigation, management or remediation of the site (if warranted).

SLR undertook the following scope of work to address the project objectives:

- a desktop review;
- fieldwork and sampling;
- laboratory analysis; and
- data assessment and reporting.

Based on a review of the available desktop search data, observations made during fieldwork, and the results of sample laboratory analysis (in the context of the open space land use (sporting field) scenario for the site), SLR makes the following conclusions:

- The detected concentrations of the identified contaminants of potential concern in soils on the site are considered:
 - unlikely to present an unacceptable direct contact, soil vapour or vapour intrusion human health exposure risk;
 - unlikely to present an unacceptable risk of forming observable light non-aqueous phase liquid (LNAPL), fire / explosive hazards, or to buried infrastructure e.g. penetration of, or damage to, in-ground services by hydrocarbons; and
 - unlikely to present an unacceptable aesthetics risk.

Based on the available data and conclusions made, SLR makes the following recommendations:

Executive Summary

- Should material need to be imported to the site, an appropriate management plan should be prepared and implemented, to control the type/s of fill being imported, and to mitigate land contamination risks associated with uncontrolled imported fill; and
- Should material on the site need to be excavated and disposed of, a waste classification for that material should be prepared beforehand in accordance with NSW EPA (2014), 'Waste Classification Guidelines, Part 1: Classifying Waste'.

This report must be read in conjunction with the limitations set out in Section 13 of this report.

Table of Contents

1	INTE	RODUCTION	8
	1.1	Background	8
	1.2	Objectives	8
	1.3	Scope of Work	8
2	SITE	IDENTIFICATION	9
3	SITE	SETTING	10
0	3.1	Geology	10
	3.2	Topography	10
	3.3	Hydrogeology	10
	3.4	Acid Sulfate Soils	10
4	PRE	VIOUS CONTAMINATION ASSESSMENTS	11
	4.1	SLR (2016)	11
5	CON	ICEPTUAL SITE MODEL	13
	5.1	Areas of Environmental Concern and Contaminants of Potential Concern	13
	5.2	Receptors and Pathways	13
		5.2.1 Proposed Land Use Scenario	13
		5.2.2 Human Health – Direct Contact	13
		5.2.3 Human Health – Inhalation / Vapour Intrusion	13
		5.2.4 Aesthetics	13
		5.2.5 Ecological – Terrestrial Ecosystems	13
6	DAT	A QUALITY OBJECTIVES	15
	6.1	Step 1 – State the Problem	15
	6.2	Step 2 – Identify the Decision	15
	6.3	Step 3 – Identify Inputs to the Decision	15
		6.3.1 Human Health - Direct Contact	16
		6.3.2 Human Health – Inhalation / Vapour Intrusion	16
		6.3.3 Human Health – Asbestos	16
		6.3.4 Petroleum Hydrocarbon Compounds – Management Limits6.3.5 Aesthetics	16 17
	C 4		
	6.4	Step 4 – Define the Study Boundaries	18
		6.4.1 Spatial Boundaries6.4.2 Temporal Boundaries	18 18
	6.5	Step 5 – Develop a Decision Rule	18
	6.6	Step 6 – Specify Acceptable Limits on Decision Errors	18
	6.7	Step 7 – Optimise the Design for Obtaining Data	20
	0.7	6.7.1 Sampling Frequency and Locations	20 20

Table of Contents

7

8

9

10

	6.7.2 Sampling Methodology	21
	6.7.3 Soil Headspace Screening	21
	6.7.4 Photographic Records	21
	6.7.5 Location Records	21
	6.7.6 Sample Identification, Storage and Transport Procedures	21
	6.7.7 Laboratory Analysis	22
	6.7.8 Fieldwork Quality Assurance / Quality Control	22
	6.7.9 Laboratory Quality Assurance / Quality Control	24
6.8	Reporting	25
FIEL	DWORK	26
7.1	Underground Services	26
7.2	Soil Sampling	26
7.3	Site Specific Geology	26
	7.3.1 Fill Material	26
	7.3.2 Natural Material	26
7.4	Odours	27
7.5	Staining	27
7.6	Potential Asbestos Containing Materials	27
7.7	Headspace Screening	27
LAB	ORATORY ANALYSIS	28
QUA	ALITY ASSURANCE / QUALITY CONTROL	29
9.1	Fieldwork	29
••••	9.1.1 Sampling	29
	9.1.2 Sample Identification, Storage and Transport	29
	9.1.3 Field Duplicates	29
	9.1.4 Trip Spike and Trip Blank	30
	9.1.5 Calibration	30
9.2	Laboratory	30
9.3	Data Quality Indicators	31
DIS	CUSSION	33
10.1	Human Health - Direct Contact Exposure Risks (Soils)	33
	10.1.1 TRH	33
	10.1.2 BTEX	33
	10.1.3 PAH	33
	10.1.4 Organochlorine Pesticides (OCP)	33
	10.1.5 Polychlorinated Biphenyl (PCB)	33
	10.1.6 Metals	33
	10.1.7 Asbestos	34

Table of Contents

	10.2 Human Health – Vapour Intrusion (Soils)	34
	10.2.1 Soil Sample Ionisable Volatile Organic Compounds	34
	10.2.2 BTEX	34
	10.2.3 TRH	34
	10.3 TRH Management Limits (Soils)	34
	10.4 Aesthetics (Soils)	34
11	CONCLUSIONS AND RECOMMENDATIONS	35
12	REFERENCES	36
13	LIMITATIONS	37

TABLES IN TEXT

Areas of Environmental Concern and Contaminants of Potential Concern	13
Health Screening Levels for asbestos contamination in soil	16
Decision Rule If/Then Statements	18
Data Quality Indicators	19
Proposed Investigation Method Summary	21
Sample Storage and Transport Requirements	22
Laboratory Analytical Quantities	22
Laboratory Data Quality Indicators	24
Limits of Reporting, Methods and Holding Times	25
Data Quality Indicator Assessment Results	31
	Health Screening Levels for asbestos contamination in soil Decision Rule If/Then Statements Data Quality Indicators Proposed Investigation Method Summary Sample Storage and Transport Requirements Laboratory Analytical Quantities Laboratory Data Quality Indicators Limits of Reporting, Methods and Holding Times

FIGURES

Figure 1	Site Locality Plan
Figure 2	Site Layout Plan
Figure 3	Areas of Environmental Co

Figure 3 Areas of Environmental Concern Figure 4 Sampling Point Layout Plan

TABLES

Table LR1	Laboratory Analytical Results – Soils
Table LR2	Laboratory Analytical Results – % RPD

APPENDICES

- Appendix A Detail and Level Survey
- Appendix B Logs
- Appendix C Laboratory
- Appendix D Calibration

1 INTRODUCTION

1.1 Background

SLR Consulting Pty Ltd (SLR) was engaged by Ku-ring-gai Council to undertake a supplementary contamination assessment for Norman Griffiths Sportsground, Lofberg Road, West Pymble, NSW (the site).

The assessment was undertaken in accordance with SLR's offer of services dated 11 April 2017 (ref: 610.17191-P02-v1.0 20170411).

SLR understands the following:

- The site is comprised of a portion of Lot 6 in DP564939, specifically the turfed playing field portion (excluding the adjacent amenities building), and covers an area of approximately 9,500m²;
- Council is considering changing the playing field surface from the existing natural turf, to a synthetic grass; and
- A stage 1 preliminary site investigation undertaken by SLR, identified two areas of environmental concern (AEC) on the site, resulting from potential uncontrolled filling.
- Council has requested a supplementary assessment of these AEC, to inform feasibility of changes to the playing field surface.

1.2 Objectives

The objectives of this project were to:

- Assess the potential for contamination to be present on the site in the identified AEC, which may present an unacceptable human health exposure risk, in the context of the resurfacing works, and an open space/recreational land use scenario; and
- Provide recommendations for additional investigation, management or remediation of the site (if warranted).

1.3 Scope of Work

SLR undertook the following scope of work to address the project objectives:

- a desktop review;
- fieldwork and sampling;
- laboratory analysis; and
- data assessment and reporting.

2 SITE IDENTIFICATION

The locality of the site is presented in Figure 1.

The site is identified as a portion of Lot 6 in DP564939.

The site is irregular in shape and occupies an area of approximately 9,500m².

The layout of the site is presented in Figure 2.

A detail and level survey of the site is presented in Appendix A.

3 SITE SETTING

3.1 Geology

The Geological Survey of NSW Sydney 1:100,000 Geological Series Sheet 9130 Edition 1 (1983) indicates that site is likely to be underlain by Middle Triassic Ashfield Shale, comprising black to dark grey shale and laminate. It is noted parts of the site may cross over into areas underlain by Middle Triassic Hawkesbury Sandstone, comprising medium to coarse grained quartz sandstone, very minor shale and laminate lenses.

3.2 Topography

The topography of the site is generally flat, with minor south west facing slopes. The site sits at an approximate elevation of 70-72m Australian height datum (AHD).

3.3 Hydrogeology

The nearest surface water courses to the site appears to be:

- Quarry Creek located approximately 300m to the south west of the site; and
- Blackbutt Creek located approximately 500m to the east of the site.

Based on site topography and the distance to the nearest identified surface water courses, it is considered that groundwater flow in the immediate vicinity of the site may be towards the south west.

A search of the NSW Natural Resources Atlas (NSW-NRS, <u>www.nratlas.nsw.gov.au</u>) conducted on 9 March 2017 identified one registered groundwater works features within the search area (500m radius of the site). The feature was a bore authorised for recreation (groundwater) and intended for irrigation. The status of the licence for the feature was "cancelled". Based on the inferred location of the feature, SLR considers it likely that the bore was used for groundwater extraction to facilitate irrigation of playing fields in the Ku-ring-gai Bicentennial Park precinct (where the site is located).

3.4 Acid Sulfate Soils

The Department of Land and Water Conservation Prospect / Parramatta Acid Sulfate Soil Edition Two map indicates that site is located in an area of no known occurrence of acid sulfate soil materials.

It is noted that acid sulfate soils typically occur at elevations <10m Australian Height Datum (AHD). The site is located at an elevation of approximately 70-72m AHD.

4 PREVIOUS CONTAMINATION ASSESSMENTS

The following contamination assessment related report was available for review as part of this investigation:

• SLR 2017, 'Stage 1 Preliminary Site Investigation, Norman Griffiths Sportsground, Portion of Lot 6 in DP564939, Lofberg Road, West Pymble, NSW' dated 3 May 2017, ref: 610.17191-R01-v1.0.

A summary of this report is presented in Section 4.1.

4.1 SLR (2016)

The objectives of this project were to:

- Assess the potential for contamination to be present on the site, as a result of past and present land use activities;
- Provide advice on the suitability of the site (in the context of land contamination), for the proposed re-surfacing;
- Provide recommendations for additional investigation, management or remediation of the site (if warranted).

SLR undertook the following scope of work to address the project objectives:

- a desktop review;
- a site walkover; and
- data assessment and reporting.

A review of available site history data and observations made during site walkover indicated a number of areas of environmental concern (AEC) and contaminants of potential concern (COPC) that are considered as requiring further assessment. These AEC and COPC are presented in the table below and Figure 3.

ID	AEC	Activity of Concern	Contaminants of Potential Concern
AEC01	Site footprint	Potential uncontrolled filling	Hydrocarbons, PCB, pesticides, metals, asbestos
AEC02	Mound	Potential uncontrolled filling	Hydrocarbons, PCB, pesticides, metals, asbestos

Based on a review of the available desktop search data and observations made during the site walkover, SLR made the following conclusions:

- Areas of environmental concern (AEC) and contaminants of potential concern (in the context of land contamination), have been identified for the site;
- The potential for contamination to be present on the site as a result of past and present land use activities is considered to be low to moderate;
- The potential for contamination being present in the identified AEC, at concentrations that may present an unacceptable human health exposure risk, is considered to be low to moderate. However, that potential could change in the event that fill soils become exposed;
- Further assessment would be required, in the context of detailed design plans for the proposed resurfacing, to provide advice on potential risks associated with the new site form and layout; and

• Consideration should be given to managing the importation of fill, to mitigate risks associated with potential contamination in that fill and unlawful application of waste to land.

Based on these conclusions, SLR made the following recommendations:

- A supplementary contamination investigation be undertaken, to make further assessment of the
 nature and extent of potential filling material on the site, in the context of detailed design and
 surface finishes. SLR considers this investigation to be a proactive approach to addressing
 contamination related uncertainties, with the findings used to inform and/or amend detailed
 design. Awareness of identified contamination on site could also assist in mitigating delays
 associated with unexpected finds encountered during resurfacing associated construction;
- As an alternative to the supplementary contamination investigation, an unexpected finds management plan be prepared, for implementation during the resurfacing construction phase. The management plan would include information on the likely types of unexpected finds that may be encountered during construction (based on available site history), and protocols on how to manage those finds as part of the construction activity. Those protocols may include a need to amend the design during construction, to accommodate unexpected finds; and
- An imported fill management plan be prepared, nominating protocols for the importation of fill material, including tracking, inspection, testing and validation criteria.

5 CONCEPTUAL SITE MODEL

5.1 Areas of Environmental Concern and Contaminants of Potential Concern

A review of available site history data and observations made during the site walkover indicated an area of environmental concern (AEC) and contaminants of potential concern (COPC) may be present on the site.

The AEC and COPC remaining for the site are presented in Table 1 and Figure 3.

Table 1	Areas of Environmental Concern and Contaminants of Potential Concern

ID	AEC	Activity of Concern	Contaminants of Potential Concern
AEC01	Site footprint	Potential uncontrolled filling	Hydrocarbons, PCB, pesticides, metals, asbestos
AEC02	Mound	Potential uncontrolled filling	Hydrocarbons, PCB, pesticides, metals, asbestos

5.2 Receptors and Pathways

5.2.1 Proposed Land Use Scenario

The site is proposed for resurfacing of the playing field with a synthetic grass.

Based on this redevelopment concept, it is considered reasonable to adopt a 'public open space such as parks, playgrounds playing fields (e.g. ovals)' land use scenario, for a contamination exposure assessment. It is noted that the human health screening levels associated with this land use scenario are more conservative compared to those typically applicable to an in intrusive maintenance worker land use scenario.

5.2.2 Human Health – Direct Contact

It is considered appropriate to assess whether a direct contact exposure risk for may be present on the site.

5.2.3 Human Health – Inhalation / Vapour Intrusion

It is considered appropriate to assess whether an inhalation (vapour intrusion) exposure risk for occupants may be present on the site.

5.2.4 Aesthetics

No visual evidence of widespread or significant staining was observed on the hardstand surface of the site. While it is considered that placement of synthetic grass would prevent receptor visual exposure to potential sub surface visual aesthetic impacts, an assessment for the presence of malodorous sub surface soils on the site should be made.

5.2.5 Ecological – Terrestrial Ecosystems

NEPC (1999) requires a pragmatic risk-based approach should be taken in applying ecological investigation and screening levels in residential and commercial / industrial land use settings. SLR notes that thus project is also limited to an assessment of human health risks in the context of land contamination.

It is noted that the redevelopment concept will include resurfacing of the site with synthetic grass (and associated subgrade). This limits the environmental values that require consideration (i.e. support of plant growth). SLR (2017) reported that vegetation on the site did not display evidence of significant or widespread phytotoxic impact (i.e. plant stress or dieback).

Further assessment of unacceptable risk to terrestrial ecosystems is considered not warranted.

6 DATA QUALITY OBJECTIVES

Data quality objectives (DQO) have been developed using the seven step processes described in

• NSW DEC 2006, Contaminated Sites: Guidelines for the NSW Site Auditor Scheme (2nd edition).

The DQO were presented in SLR (2015), with the first three DQO replicated in Sections 6.1 to 6.8 below.

6.1 Step 1 – State the Problem

The objectives are to:

- Assess the potential for contamination to be present on the site in the identified AEC, which may present an unacceptable human health exposure risk, in the context of the resurfacing works, and an open space/recreational land use scenario; and
- Provide recommendations for additional investigation, management or remediation of the site (if warranted).

The main problems are:

- How should relevant site media be assessed;
- What sampling layout should be used; and
- What contaminants should be analysed for and by what method to be useful for assessment.

6.2 Step 2 – Identify the Decision

The decisions that need to be made during this project include:

- Is the field and laboratory analytical data suitable for assessing the quality of the media being assessed;
- Does contamination in soils on the site present an unacceptable exposure risk for the adopted land use scenario; and
- Is the site suitable (in the context of land contamination) for the proposed redevelopment concept.

6.3 Step 3 – Identify Inputs to the Decision

The primary inputs to assessing the above include:

- the site history made available;
- location, distribution and intervals of sampling at the site;
- data collected during the assessment, including field measurements, field observations and laboratory analysis results;
- outcomes of the assessment of the quality of collected data;
- adopted exposure risk assessment criteria.

Exposure risk assessment criteria will be adopted from:

- National Environment Protection Council (NEPC) 1999, 'Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater, National Environment Protection (Assessment of Site Contamination) Measure (NEPM), as amended in 2013'.
- Friebel, E & Nadebaum, P 2011, 'Health screening levels for petroleum hydrocarbons in soil and groundwater, Part 2: Application document, CRC CARE Technical Report No. 10'

6.3.1 Human Health - Direct Contact

The relevant direct contact:

- Health-Based Investigation Levels (HILs) for public open space in Table 1A (1) in NEPC (1999); and
- Health Screening Levels (HSL) for residential and intrusive maintenance workers listed in Table B4 of Friebel, E & Nadebaum, P (2011);

are adopted for this assessment.

6.3.2 Human Health – Inhalation / Vapour Intrusion

For the proposed land use exposure scenario, the relevant soil HSL for vapour intrusion listed in Table 1A (3) in NEPC (1999), are adopted for this assessment.

If required, relevant soil analytical data will be assessed against those HSLs relevant to the soil type encountered during intrusive works on the site.

Should evidence of petroleum hydrocarbon contamination be identified in site soils (e.g. significant odours, elevated PID readings), then assessment of soil vapour intrusion risk should be considered (against soil vapour HSLs for vapour intrusion in Table 1A(5) in NEPC (1999)).

6.3.3 Human Health – Asbestos

NEPC (1999) provides health screening levels for asbestos contamination in soil, which are based on specific land use exposure scenarios, for three forms of asbestos: bonded asbestos containing material (ACM), friable asbestos (FA) and asbestos fines (AF). These health screening levels are provided in Table 2.

Form of asbestos	Health Screening Level (W/W)			
	Residential A	Residential B	Recreational C	Commercial/Industrial
ACM	0.01%	0.04%	0.02%	0.05%
FA and AF	0.001%			
All forms of asbestos		No visible asb	estos in surface soil	

Table 2	Health Screening Levels for asbestos contamination in soil
---------	--

The laboratory method for analysis of asbestos in bulk materials is based on AS 4964-2004. Consequently, a practical quantification limit equal to or less than 0.001% by weight is not adopted and the limit is 0.1g/kg (equivalent to 0.01% w/w). For the purposes of this project, criteria of "no visible asbestos containing materials in surface soils (top 10cm)" and "no asbestos fibres detected in samples using trace analysis techniques" has been adopted as initial screening criteria.

6.3.4 Petroleum Hydrocarbon Compounds – Management Limits

NEPC (1999) advises that management limits for petroleum hydrocarbon compounds need to be considered to minimise the potential effects of:

- Formation of observable light non-aqueous phase liquids (LNAPL);
- Fire and explosive hazards; and
- Effects on buried infrastructure e.g. penetration of, or damage to, in ground services by hydrocarbons.

For the proposed land use exposure scenario, the management limits for commercial / industrial in Table 1 B(7) of NEPC (1999), are adopted for this project. Specific management limits (relevant to soil texture) will be adopted based on field assessment of predominant soil types encountered during intrusive investigations i.e. coarse grain (sands) versus fine grain (silts and clays).

6.3.5 Aesthetics

NEPC (1999) requires that aesthetic quality of accessible soils be considered even if testing suggests that the concentrations of contaminants of concern are within acceptable limits.

No specific numerical guidelines have been assigned for aesthetics. However the NEPM 2013 indicates that professional judgement with regard to quantity, type and distribution of foreign material and/or odours in relation to the specific land use and its sensitivity should be employed.

The following circumstances are considered likely to trigger further aesthetic assessment:

- highly malodorous soils or extracted groundwater (e.g. strong residual petroleum hydrocarbon odours, hydrogen sulphide in soil or extracted groundwater, organo-sulfur compounds);
- hydrocarbon sheen on surface water;
- discoloured chemical deposits or soil staining with chemical waste other than of a very minor nature;
- large monolithic deposits of otherwise low risk material, e.g. gypsum as powder or plasterboard, cement kiln dust;
- presence of putrescible refuse including material that may generate hazardous levels of methane; and
- soils containing residue from animal burial.

There are no specific numeric aesthetic guidelines, however site assessment requires balanced

- consideration of the quantity, type and distribution of foreign material or odours in relation to the
- specific land use and its sensitivity. For example, higher expectations for soil quality would apply to
- residential properties with gardens compared with industrial settings.

General assessment considerations will include:

- that chemically discoloured soils or large quantities of various types of inert refuse particularly if unsightly, may cause ongoing concern to site users;
- the depth of the materials, including chemical residues, in relation to the final surface of the site; and
- the need for, and practicality of, any long-term management of foreign material.

In some cases, documentation of the nature and distribution of the foreign material may be sufficient to address concerns relating to potential land use restrictions.

In arriving at a balanced assessment, the presence of small quantities of non-hazardous inert material and low odour residue (for example, weak petroleum hydrocarbon odours) that will decrease over time will not be a cause of concern or limit the use of a site in most circumstances. Similarly, sites with large quantities of well-covered known inert materials that present no health hazard such as brick fragments and cement wastes (for example, broken cement blocks) will be of low concern for the proposed land use scenario.

However, caution will be applied when assessing large quantities of various fill types and demolition rubble are present.

6.4 Step 4 – Define the Study Boundaries

6.4.1 Spatial Boundaries

The horizontal boundary of the project is defined by the boundary of the site.

The vertical boundary of the project for soils is defined by the depth of potentially impacted material.

6.4.2 Temporal Boundaries

The temporal boundaries of investigation works will be limited by:

- natural daylight working hours; and
- levels of precipitation which, in the opinion of the environmental consultant, prevents adequate visual observations to be made.

6.5 Step 5 – Develop a Decision Rule

The decision rules for the project will be as follows:

- If the results of the laboratory analytical data and field data quality assessment are acceptable (i.e. comply with the procedures, requirements and limits set out in Section 6.7, then the data will be considered suitable for the purposes of the project. Data will be assessed for completeness, comparability, representativeness, precision and accuracy.
- If the results of the laboratory analytical data are within the adopted assessment criteria and fieldwork observations are acceptable, then the level of contamination in the media assessed will be considered an acceptable exposure risk.

Specifically, a series of if/then statements specific to each area requiring assessment, is presented in Table 3.

ID	Decision Rule If/Then Statements		
AEC01	If analytical results and field observations are less than adopted assessment criteria, then contamination related exposure risks are considered acceptable.		
AEC02	If analytical results and field observations are less than adopted assessment criteria, then contamination related exposure risks are considered acceptable.		

Table 3 Decision Rule If/Then Statements

If the results of laboratory analytical data exceed the adopted assessment criteria or the fieldwork observations are unacceptable, then the level of contamination in the media assessed may require further assessment, management or remediation.

6.6 Step 6 – Specify Acceptable Limits on Decision Errors

There are two types of error:

- deciding that contamination on the site is an acceptable risk for the proposed land use when it is not; and
- deciding that contamination on the site is not an acceptable risk for the proposed land use when it is.

The assessment will aim to conclude with 95% confidence that media in the identified areas of environmental concern do not present an unacceptable risk. Consequently, the 95% upper confidence limit (UCL) statistic will be used to assess the mean concentrations of chemicals of potential concern in soil (where appropriate).

Confidence in the reliability of assessment methods (e.g. field observations, laboratory analysis and data review) will be based on appropriate levels of qualification and/or experience in the personnel undertaking the relevant task.

The data quality indicators set out in Table 4 will be used to assess data for completeness, comparability, representativeness, precision and accuracy.

Table 4	Data	Quality	Indicators
	σαια	Quanty	mulcators

Completeness	
Field Considerations	Laboratory Considerations
All critical locations sampled	All critical samples analysed in accordance with the data quality objectives
All samples collected (from grid and at depth)	All applyton applying in apportance with the data
SOPs appropriate and complied with	All analytes analysed in accordance with the data quality objectives
Experienced sampler	Appropriate methods and LORs
Documentation correct	Sample documentation complete
	Sample holding times complied with
Comparability	
Field Considerations	Laboratory Considerations
Same SOPs used on each occasion	Sample analytical methods used (including clean-up)
Experienced sampler	Sample LORs (justify/quantify if different)
Climatic conditions	Same laboratories (justify/quantify if different)
(temperature, rainfall, wind)	Same units (justify/quantify if different)
Same types of samples collected (filtered, size fractions)	
Representativeness	
Field Considerations	Laboratory Considerations
Appropriate media sampled in accordance with the data quality objectives	All samples analysed in accordance with the data quality objectives
All media identified in data quality objectives sampled	
Precision	
Field Considerations	Laboratory Considerations
SOPs appropriate and complied with	Analysis of:
	 laboratory and inter-laboratory duplicates
	field duplicates
	 laboratory-prepared volatile trip spikes

Accuracy (bias)	
Field Considerations	Laboratory Considerations
SOPs appropriate and complied with	Analysis of:
	 field blanks
	 rinsate blanks
	 reagent blanks
	method blanks
	 matrix spikes
	 matrix spike duplicates
	surrogate spikes
	reference materials
	 laboratory control samples
	 laboratory-prepared spikes

6.7 Step 7 – Optimise the Design for Obtaining Data

6.7.1 Sampling Frequency and Locations

The site covers an area of approximately 9,500m². NSW EPA 1995, 'Contaminated Sites: Sampling Design Guidelines' recommends a minimum of twenty systematic sampling points to characterise a site of this size. SLR notes that the minimum sampling points set out in Table A in NSW EPA (1995)¹ is an approach for site characterisation based on detecting hot spots of certain diameters, using a systematic (i.e. grid based), sampling pattern, where the investigator has little knowledge about probable locations of contamination.

Section 3.1 of NSW EPA (1995) states that:

• A judgemental sampling pattern can be used where there is enough information on the probable locations of contamination

Section 6.2 of NEPC (1999b) provides guidance on undertaking judgemental sampling, sample random sampling and systematic / grid sampling. It is noted that NEPC (1999b) states that:

- judgemental sampling is based on knowledge of the site and professional judgement; and
- sampling is localised to known or potentially contaminated areas identified from knowledge of the site either from the site history or an earlier phase of site investigation; and
- judgemental sampling is commonly used to investigate sub surface contamination issues in site assessment.

Given the understanding of site history, it is considered appropriate to apply a judgemental and targeted based sampling pattern to address relevant areas of environmental concern.

¹ NSW EPA 1995, Contaminated Sites: Sampling Design Guidelines', dated September 1995, ref: EPA 95/59.

Specifically, it is considered appropriate and adequate to characterise potential site contamination with a total of 16 intrusive soil sampling points.

6.7.2 Sampling Methodology

6.7.2.1 Test Pits

Test pits will be excavated on site in accordance with the methodology presented in Table 5. Target depths are based on a number of factors including:

- Contaminant laydown mechanisms;
- Contaminant types; and
- Likely depth of contamination.

Sampling Point ID	Sampling Method	Target Depth
TP01 – TP16	Track mounted hydraulic excavator	Up to 1.0m below ground surface, 0.3m into natural material or practical refusal, whichever occurs first
TP13 – TP16	Track mounted hydraulic excavator	Inferred base of mound, 0.3m into natura material or practical refusal, whichever occurs first

6.7.2.2 Soil Sampling

Soil samples will be collected from each sampling point at the surface and then at regular depths thereafter, or where there is evidence of contamination or a change in soil lithology. Materials encountered during sampling will be logged in general accordance with the Unified Soil Classification System (UCS).

6.7.3 Soil Headspace Screening

Soil samples will be screened in the field for ionisable volatile organic compounds (VOC) using a calibrated photo-ionisation detector (PID). Screening results will be recorded on the relevant log.

6.7.4 Photographic Records

Photographs of fieldwork and other features of interest relevant to the project will be taken.

6.7.5 Location Records

The location of each sampling point will be recorded by hand on a site plan.

6.7.6 Sample Identification, Storage and Transport Procedures

Samples will be identified using unique sampling point identifiers and sample depth intervals (e.g. TP01/0.0-0.2).

Samples will be placed in laboratory prepared containers and zip lock bags, as appropriate. The sample containers will then be placed directly into an insulated chest containing ice, for transportation to the NATA accredited analytical laboratory with the chain of custody (COC) form recording the following information:

- project job number;
- date of sampling;

- sample identifier;
- sample matrix and container type;
- preservation methods used;
- analysis requirements for each sample;
- turnaround times required for analysis; and
- names and signatures of sender and receiving laboratory.

A copy of the chain of custody will be kept in the job file. Samples will be transported to the laboratory with sufficient time to perform analysis within the applicable holding period.

The proposed sample storage and transport requirements for the likely contaminants of potential concern are presented in Table 6.

Analyte	Soil Sample Container Type	Groundwater Sample Container Type	Storage and Transport
TRH C6-C10	1 x 250mL glass	2 x glass vials	Ice and insulated container
TRH >C10-C40	1 x 250mL glass	Nil	Ice and insulated container
BTEX	1 x 250mL glass	2 x glass vials	Ice and insulated container
VOC	1 x 250mL glass	2 x glass vials	Ice and insulated container
PAH	1 x 250mL glass	Nil	Ice and insulated container
Phenol	1 x 250mL glass	1 x amber glass bottle	Ice and insulated container
PCB	1 x 250mL glass	Nil	Ice and insulated container
OCP	1 x 250mL glass	Nil	Ice and insulated container
Metals	1 x 250mL glass	1 x plastic bottle	Ice and insulated container
Asbestos	1 x 50-100g zip lock bag	Nil	Nil

 Table 6
 Sample Storage and Transport Requirements

6.7.7 Laboratory Analysis

Selected samples will be scheduled for analysis, based on identified contaminants of potential concern for the AEC that the sampling point is located in, field observations and headspace screening results, up to the quantities presented in Table 7.

Table 7 Laboratory Analytical Quantities

Sampling Point ID	TRH/BTEX	PAH	OCP / PCB	Metals	Asbestos
TP01 - TP12	6	12	4	12	12
TP13 – TP16	2	4	2	4	4

In the event that field screening of soil samples identifies a potential for contamination to be present beyond that which can be assessed with the analytical quantities nominated in Table 7, analysis of additional soil samples (or additional analytes) will be considered.

6.7.8 Fieldwork Quality Assurance / Quality Control

6.7.8.1 Decontamination Procedures

Non-disposable sampling equipment will be decontaminated before and between sampling events to reduce the potential for cross contamination to occur between samples. Decontamination will include the following procedure:

- washing non-disposable sampling equipment in a solution of phosphate free detergent (e.g. Decon 90) and potable water; and
- rinsing with distilled water.

6.7.8.2 Intra-laboratory Duplicates

Intra-laboratory field duplicates will be collected on an average frequency of one sample per twenty samples collected (5%), with a minimum of one per batch (excluding samples collected for asbestos analysis). The analytical results of the two spilt samples will be compared to assess the precision of the sampling protocol, and provide an indication of variability in the sample source. The relative percentage difference (RPD) acceptance limits will be:

- No limit analytical results <10 times LOR
- 50% analytical results 10-20 times LOR
- 30% analytical results >20 times LOR

The RPD exceedances (if any) will be assessed to determine whether the project DQO's can still be addressed. If not, then further sampling and/or analysis may be required.

6.7.8.3 Inter-Laboratory Duplicates

Inter-laboratory field duplicates will be collected on an average frequency of one sample per twenty samples collected (5%) with a minimum of one per batch (excluding samples collected for asbestos analysis). The analytical results of the two spilt samples will be compared to assess the precision of the sampling protocol, and provide an indication of variability in the sample source. The relative percentage difference (RPD) acceptance limits will be:

- No limit analytical results <10 times LOR
- 50% analytical results 10-20 times LOR
- 30% analytical results >20 times LOR

The environmental consultant will assess RPD exceedances (if any) and whether the project DQO's can still be addressed. If not, then further sampling and/or analysis may be required.

6.7.8.4 Rinsate Samples

A rinsate sample will be collected and analysed for each day of field work carried out, where nondisposable sampling equipment has been used. The rinsate sample will be analysed for generally the same contaminants of potential concern that the samples are being analysed for (excluding asbestos).

The acceptance limit shall be the detected concentrations of the contaminants of concern analysed for in the sample, are less than the applicable LOR. The environmental consultant will assess the significance of the acceptance limit exceedance and whether the project DQO's can still be addressed. If not, then further sampling and/or analysis may be required.

6.7.8.5 Trip Blanks

Trip blanks will be used and analysed for a batch of samples provided to the laboratory, where the contaminants being analysed for, are volatile in nature (e.g. BTEX or TPH C_6 - C_{10}). The trip blank will be analysed for BTEX.

The acceptance limit shall be the detected concentrations of BTEX in the trip blank, are less than the applicable LOR. The environmental consultant will assess the significance of acceptance limit exceedances and whether the project DQO's can still be addressed. If not, then further sampling and/or analysis may be required.

6.7.8.6 Trip Spikes

Trip spikes will be used and analysed for a batch of samples provided to the laboratory, where the contaminants being analysed for, are volatile in nature (e.g. BTEX or TPH C_6 - C_{10}). The trip spike will be analysed for BTEX.

The acceptance limit shall be the BTEX recoveries in the trip spike are between 60% and 140%. The environmental consultant will assess the significance of acceptance limit exceedances and whether the project DQO's can still be addressed. If not, then further sampling and/or analysis may be required.

6.7.9 Laboratory Quality Assurance / Quality Control

6.7.9.1 Laboratory Selection

The primary and secondary laboratories used for this project will be NATA-accredited for the analyses being undertaken.

6.7.9.2 Laboratory Data Quality Indicators

The laboratory data quality will be assessed by checking the following:

- laboratory methods used are NATA accredited;
- laboratory limits of reporting are less than adopted assessment criteria;
- samples are extracted and analysed within holding times; and
- results of method blanks, surrogate, lab control sample, spike recoveries relative percentage differences (RPDs) between primary and duplicate laboratory samples.

Data Quality Indicators (DQI) that will be adopted for quality control samples are presented in Table 8.

Table 8 Laboratory Data Quality Indicators

Type of Quality Control Sample	Control Limit	
Method Blank	Analytical result < LOR	
Surrogate % Recovery	50% - %150%	
Labe Control Sample % Recovery	70% - 130%	
Spike % Recovery	70% - 130% for inorganics 60% - 140% for organics	
RPD	No limitAnalytical results <10 times LOR50%Analytical results 10-20 times LOR30%Analytical results >20 times LOR	

Should the results of a laboratory quality control sample exceed the relevant adopted control limit, the laboratory will be requested assess the significance of the exceedance on the quality of the laboratory analytical data for the relevant batch. The environmental consultant will assess the significance of the control limit exceedance and whether the project DQO's can still be addressed. If not, then further sampling and/or analysis may be required.

6.7.9.3 Laboratory Limits of Reporting, Analytical Methods and Holding Times

Laboratory limits of reporting, analytical methods and holding times are presented in Table 9.

Analyte	Limit of Reporting (mg/kg)	Limit of Reporting (µg/L)	Method	Holding Time
BTEX and TRH C6- C10	0.2-0.5	1.0-2.0 and 50	USEPA 5030, 8260B and 8020	14 days
TRH >C10-C40	20-100	50-500	USEPA 8015B & C	14 days
PAH	0.1-0.2	-	USEPA 8270	14 days
VOC	0.1-0.5mg/kg	0.5-10	USEPA8260	14 days
OCP	0.2	-	USEPA 8081	14 days
PCB	0.2	-	USEPA 8270	14 days
Phenol	0.1	0.01	APHA 4500 P	14 days
Metals	1	0.1-5	USEPA 200	6 months
Asbestos	Presence / Absence	-	AS4964:2004	No limit

Table 9 Limits of Reporting, Methods and Holding Times

6.8 Reporting

A stage 2 detailed site investigation report will be prepared in accordance with the relevant sections of NSW OEH 2011, 'Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites', and will include the following:

- Executive summary;
- Scope of work;
- Site identification;
- Site history summary;
- Site condition and surrounding environment summary;
- Information on geology and hydrogeology;
- Field and laboratory analytical data;
- Field and laboratory data QA/QC assessment;
- Site characterisation; and
- Conclusions and recommendations.

7 FIELDWORK

7.1 Underground Services

An online dial before you dig search was submitted on 1 June 2017 and the plans received were reviewed.

An underground service survey of proposed drilling locations was undertaken on 6 June 2017, by Geotrace, under the supervision of SLR Consulting.

7.2 Soil Sampling

Soil sampling was undertaken on 6 June 2017. A total of sixteen soil sampling points were set out for the site (TP01 to TP16).

Soil test pits were excavated by Ken Coles Excavations using a hydraulic excavator.

Soil samples were collected from hand auger cuttings at the surface and at regular intervals thereafter, or where there was visual or olfactory evidence of contamination observed.

Collected samples were placed into laboratory prepared jars (with Teflon lined lids) and zip lock bags. Jars and bags were labelled with a project number, sampling point and depth interval, and the date. Samples were placed in insulated containers with ice during storage on site and transport to the laboratory.

The location of each sampling point was recorded on a site plan and these locations are presented in Figure 4.

7.3 Site Specific Geology

Observations of soils encountered at each borehole location were recorded and are presented in logs in Appendix B.

7.3.1 Fill Material

Fill material was encountered in the test pits to depths ranging from 0.2m below ground level to 2.2m below ground level.

Details of fill soils encountered are included in the test pit logs presented in Appendix B.

Anthropogenic materials encountered in the fill material generally included asphalt, concrete, brick, wood, metal and plastic. Two large tree logs were also encountered buried in fill at depths of 1.0 and 1.3m below ground level, at sampling point TP05.

7.3.2 Natural Material

Natural material was encountered in nine of sixteen test pits, while natural material was suspected to have been encountered in a further three of the sixteen test pits.

Natural material was not encountered at sampling point TP05 (refusal conditions due to presence of buried logs).

Natural material was not encountered at sampling point TP15 and sampling point 16. However the target depth of sampling (inferred base of mound) was reached.

7.4 Odours

Olfactory evidence of odours in soil during the sampling works, were not encountered.

7.5 Staining

Visual evidence of staining in the soil samples collected was not observed.

7.6 Potential Asbestos Containing Materials

Visual evidence of potential asbestos containing materials (ACM) in the soil samples collected was not encountered.

7.7 Headspace Screening

Headspace screening was undertaken on the samples collected and the results are presented in the logs in Appendix B. Headspace screening was undertaken by placing a sub sample of soil from each relevant sampling point/depth into a zip lock bag, sealing the bag and shaking the bag gently. Each bag was then pierced using the tip of the PID probe and the PID screening result recorded.

The results of the headspace screening indicated a low to negligible potential for ionisable volatile organic compounds to be present in the soils encountered.

8 LABORATORY ANALYSIS

A selection of soil samples and groundwater samples were scheduled for laboratory analysis, based on field observations and the contaminants of potential concern identified for the relevant areas of environmental concern (refer to Section 5.1).

Copies of the laboratory certificates of analysis are presented in Appendix C.

Tabulated laboratory analytical results are presented in Table LR1.

9 QUALITY ASSURANCE / QUALITY CONTROL

9.1 Fieldwork

9.1.1 Sampling

The sampling was undertaken

- in accordance with SLR's standard operating procedures (SOP). These procedures are based on accepted industry practice for projects of this kind; and
- by a suitably experienced SLR environmental consultant (Craig Cowper);

The appropriate media (soil) was sampled.

All critical soil sampling points were sampled.

9.1.2 Sample Identification, Storage and Transport

Samples were placed in laboratory prepared containers and zip lock plastic bags, and stored in eskies with ice, for transportation to the analytical laboratory, under chain of custody (COC) protocol. The following information was recorded on the COC:

- project job number;
- date of sampling;
- sample identifier;
- sample matrix and container type;
- preservation methods used;
- analysis requirements for each sample;
- turnaround times required for analysis; and
- names and signatures of sender and receiving laboratory.

Sample receipt advice from the receiving laboratories confirmed that the samples were received chilled (or an attempt to chill the samples was made).

A copy of the chain of custody documentation is presented in Appendix C for both the primary laboratory and the secondary laboratory.

9.1.3 Field Duplicates

A total of 34 primary soil samples were schedule for chemical analysis for the project.

Three intra-laboratory duplicate was collected and analysed (a rate of 11% which addresses the minimum acceptance criterion of 5%).

Three inter-laboratory duplicate were collected and analysed (a rate of 11% which addresses the minimum acceptance criterion of 5%). However, it is noted that a clerical error made when completing the chain of custody, resulted in the inter-laboratory duplicate being analysed by the primary lab, rather than a secondary lab. However, the detected analyte concentrations in the primary sample, intra-laboratory duplicate and inter-laboratory duplicate were all less than the relevant adopted assessment criteria, and within ranges expected, based on site history and field observations. This minor non-conformance with the data quality objectives is not considered to have a material impact on the quality of the data, or the conclusions drawn based on the data, within the context of this investigation.

The parent / duplicate sample relationships and associated laboratory analytical data, is presented in Table LR2. The relative percentage difference (RPD) acceptance limits adopted were:

- No limit analytical results <10 times LOR
- 50% analytical results 10-20 times LOR
- 30% analytical results >20 times LOR

The relative percentage difference (RPD) between the parent sample and duplicates analysed, were within the RPD acceptance criteria, with the exception of.

- Field duplicate DUP02 (parent sample TP02/0.6-0.8) had an exceeding RPD for copper and zinc;
- Field duplicate DUP03 and DUP03A (parent sample TP13/1.1-1.3) had an exceeding RPD for zinc;

The exceedances of the adopted RPD assessment criteria are therefore considered likely attributable to heterogeneity within the discrete fill soil samples (rather than sampling or laboratory analysis error). SLR notes that the parent and field duplicate / triplicate samples were not able to be homogenised prior to splitting, due to the potential for volatile contaminants to be present in this AEC.

9.1.4 Trip Spike and Trip Blank

One trip spike was used during the fieldwork and one was scheduled for BTEX analysis. The recovery results of the spike analysis were within the adopted acceptance criterion, indicating that sample preservation procedures during storage and transport were adequate for the mitigation of volatile sample losses from sample containers.

One trip blank was used during the fieldwork. The blank was not scheduled for analysis. However, the laboratory analytical results for volatile contaminants in the samples analysed were within expected ranges, based on site history and field observations. Given that BTEX concentrations in the primary samples analysed were less than the laboratory LOR, SLR consider the potential for cross contamination of volatile contaminants between samples, during storage and transport, was negligible.

9.1.5 Calibration

Sampling equipment used for the fieldwork, included a photoionisation detector (PID). A copy of the relevant calibration record for the equipment is presented in Appendix D.

9.2 Laboratory

Copies of the laboratory certificates of analysis, data quality objective reports, sample receipt advice and chain of custody records for the primary and secondary laboratories are presented in Appendix C.

The results of an assessment of laboratory analytical data quality indicate that:

- Laboratory analysis of the samples was undertaken by NATA accredited environmental testing laboratories (SGS Environmental, Alexandria NSW and Eurofins MGT, Lane Cove West NSW);
- The identified contaminants of potential concern were analysed for;
- The laboratory analytical methods and laboratory limits of reporting were appropriate for the objective of this project;
- The laboratory analytical methods and laboratory limits of reporting were consistent between the primary and secondary analytical laboratories;
- The same analytical laboratory was used for analysing all primary samples;
- The same analytical laboratory was used for analysing all secondary samples;

- Samples were extracted and analysed within applicable laboratory holding times;
- The laboratory sample surrogate recoveries were within laboratory acceptance criteria;
- The laboratory method blank analytical results were less than the laboratory limit of reporting;
- The relative percentage differences (RPD) between samples and laboratory prepared duplicates, were within the laboratories adopted acceptance criteria, with the exception of 3 metal analytes and 2 TRH analytes in SGS batch SE166371. The laboratory reported these exceedences to be the result of sample heterogeneity;
- The laboratory control sample recoveries were within the laboratory's adopted acceptance criteria; and
- The laboratory matrix spike recoveries were within the laboratory's adopted acceptance criteria, with the exception of two metal analytes in SGS batch SE166371. The laboratory reported these exceedences to be the result of matrix interference.

A copy of the laboratory data quality indicators is presented in Appendix C.

9.3 Data Quality Indicators

The assessment of field and laboratory data was compared to the data quality indicators adopted for the project. This assessment is presented in Table 10.

Completeness		
Field Considerations	Laboratory Considerations	Comment
All critical locations sampled	All critical samples analysed in accordance with the data quality	Acceptable
All samples collected (from grid and at depth)	objectives	
SOPs appropriate and complied with	All analytes analysed in accordance with the data quality objectives	
	Appropriate methods and LORs	
Experienced sampler	Sample documentation complete	
Documentation correct	Sample holding times complied with	
Comparability		
Field Considerations	Laboratory Considerations	Comment
Same SOPs used on each occasion	Sample analytical methods used (including clean-up)	Acceptable
Experienced sampler	Sample LORs (justify/quantify if different)	
Climatic conditions (temperature, rainfall, wind)	Same laboratories (justify/quantify if different)	
Same types of samples collected (filtered, size fractions)	Same units (justify/quantify if different)	
Representativeness		

Table 10 Data Quality Indicator Assessment Results

Field Considerations		Laboratory Considerations	Comment
			Comment
Appropriate media sample accordance with the quality objectives		All samples analysed in accordance with the data quality objectives	Acceptable
All media identified in I sampled	DQO		
Precision			
Field Considerations		Laboratory Considerations	Comment
SOPs appropriate complied with	and	Analysis of:	Acceptable
		 laboratory and inter laboratory duplicates 	
		 field duplicates 	
		 laboratory-prepared volatile trip spikes 	
Accuracy (bias)			
Field Considerations		Laboratory Considerations	Comment
SOPs appropriate complied with	and	Analysis of:	Acceptable
		- field blanks	
		 field blanks 	
		rinsate blanks	
		rinsate blanks	
		rinsate blanksreagent blanks	
		rinsate blanksreagent blanksmethod blanks	
		 rinsate blanks reagent blanks method blanks matrix spikes 	
		 rinsate blanks reagent blanks method blanks matrix spikes matrix spike duplicates 	
		 rinsate blanks reagent blanks method blanks matrix spikes matrix spike duplicates surrogate spikes 	

The data is therefore considered to be adequately complete, comparable, representative, precise and accurate for the purpose of interpretation within the objective of this project.

10 DISCUSSION

A laboratory analytical data summary table for this investigation is presented in the attached Table LR1. The data contained in that summary table has been used for the purposes of assessing the contamination status of the site, in the context of the proposed land use scenario.

10.1 Human Health - Direct Contact Exposure Risks (Soils)

10.1.1 TRH

The detected concentrations of TRH C6-C10, TRH >C10-C16, TRH >C16-C34 and TRH >C34-C40 in the site investigation samples analysed were less than the adopted investigation criteria.

Further assessment, management or remediation of TRH direct contact exposure risks in soil at the site is considered not warranted.

10.1.2 BTEX

The detected concentrations of benzene, toluene, ethyl benzene and xylenes in the site investigation samples analysed were less than the adopted investigation criteria.

Further assessment, management or remediation of BTEX direct contact exposure risks in soil at the site is considered not warranted.

10.1.3 PAH

The detected concentrations of relevant PAH compounds in the site investigation samples analysed were less than the adopted investigation criteria.

Further assessment, management or remediation of PAH compounds direct contact exposure risks in soil at the site is considered not warranted.

10.1.4 Organochlorine Pesticides (OCP)

The detected concentrations of relevant OCP compounds in the site investigation samples analysed were less than the adopted investigation criteria.

Further assessment, management or remediation of OCP compounds direct contact exposure risks in soil at the site is considered not warranted.

10.1.5 Polychlorinated Biphenyl (PCB)

The detected concentrations of PCB in the site investigation samples analysed were less than the adopted investigation criteria.

Further assessment, management or remediation of PCB compounds direct contact exposure risks in soil at the site is considered not warranted.

10.1.6 Metals

The detected concentrations of arsenic, cadmium, chromium, copper, lead, nickel, zinc and mercury in the site investigation samples analysed were less than the adopted investigation criteria

Further assessment, management or remediation of direct contact exposure risks associated with these metals in soil at the site is considered not warranted.

10.1.7 Asbestos

No respirable fibres were detected in the samples analysed using trace analysis techniques.

Asbestos was not detected in the site investigation samples analysed.

Further assessment, management or remediation of asbestos in fill soils is considered not warranted.

10.2 Human Health – Vapour Intrusion (Soils)

10.2.1 Soil Sample Ionisable Volatile Organic Compounds

The results of the headspace screening indicated a low potential for ionisable volatile organic compounds to be present in the soils encountered.

10.2.2 BTEX

The concentrations of benzene, toluene, ethyl benzene and xylenes in the site investigation samples analysed were less than the adopted investigation criteria.

Further assessment, management or remediation of BTEX vapour intrusion risks in soil at the site is considered not warranted.

10.2.3 TRH

The concentrations of TRH C6-C10 (F1) and TRH >C10-C16 (F2) in the site investigation samples analysed were less than the adopted investigation criteria.

Further assessment, management or remediation of TRH vapour intrusion risks in soil at the site is considered not warranted.

10.3 TRH Management Limits (Soils)

The concentrations of TRH C6-C10, TRH >C10-C16, TRH >C16-C34 and TRH >C34-C40 in the site investigation samples analysed were less than the adopted management limit investigation criteria.

10.4 Aesthetics (Soils)

Evidence of widespread or significant staining, buried wastes, odour or potential asbestos containing materials, was not observed in the soils encountered during intrusive works. Further assessment, management or remediation of these potential aesthetic impacts on site is considered not warranted.

11 CONCLUSIONS AND RECOMMENDATIONS

Based on a review of the available desktop search data, observations made during fieldwork, and the results of sample laboratory analysis (in the context of the open space land use (sporting field) scenario for the site), SLR makes the following conclusions:

- The detected concentrations of the identified contaminants of potential concern in soils on the site are considered:
 - unlikely to present an unacceptable direct contact, soil vapour or vapour intrusion human health exposure risk;
 - unlikely to present an unacceptable risk of forming observable light non-aqueous phase liquid (LNAPL), fire / explosive hazards, or to buried infrastructure e.g. penetration of, or damage to, in-ground services by hydrocarbons; and
 - unlikely to present an unacceptable aesthetics risk.

Based on the available data and conclusions made, SLR makes the following recommendations:

- Should material need to be imported to the site, an appropriate management plan should be prepared and implemented, to control the type/s of fill being imported, and to mitigate land contamination risks associated with uncontrolled imported fill; and
- Should material on the site need to be excavated and disposed of, a waste classification for that material should be prepared beforehand in accordance with NSW EPA (2014), 'Waste Classification Guidelines, Part 1: Classifying Waste'.

This report must be read in conjunction with the limitations set out in Section 13 of this report.

12 **REFERENCES**

Friebel, E & Nadebaum, P 2011, 'Health screening levels for petroleum hydrocarbons in soil and groundwater. Part 2: Application document', CRC CARE Technical Report No. 10.

National Environment Protection Council (NEPC) 1999a, 'Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater, National Environment Protection (Assessment of Site Contamination) Measure (NEPM) as amended in May 2013'.

National Environment Protection Council (NEPC) 1999b, 'Schedule B(2) Guideline on Site Characterisation, National Environment Protection (Assessment of Site Contamination) Measure (NEPM) as amended in May 2013'.

NSW DEC 2006, 'Contaminated Sites: Guidelines for the NSW Site Auditor Scheme (2nd edition)'.

NSW OEH 2011, 'Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites'.

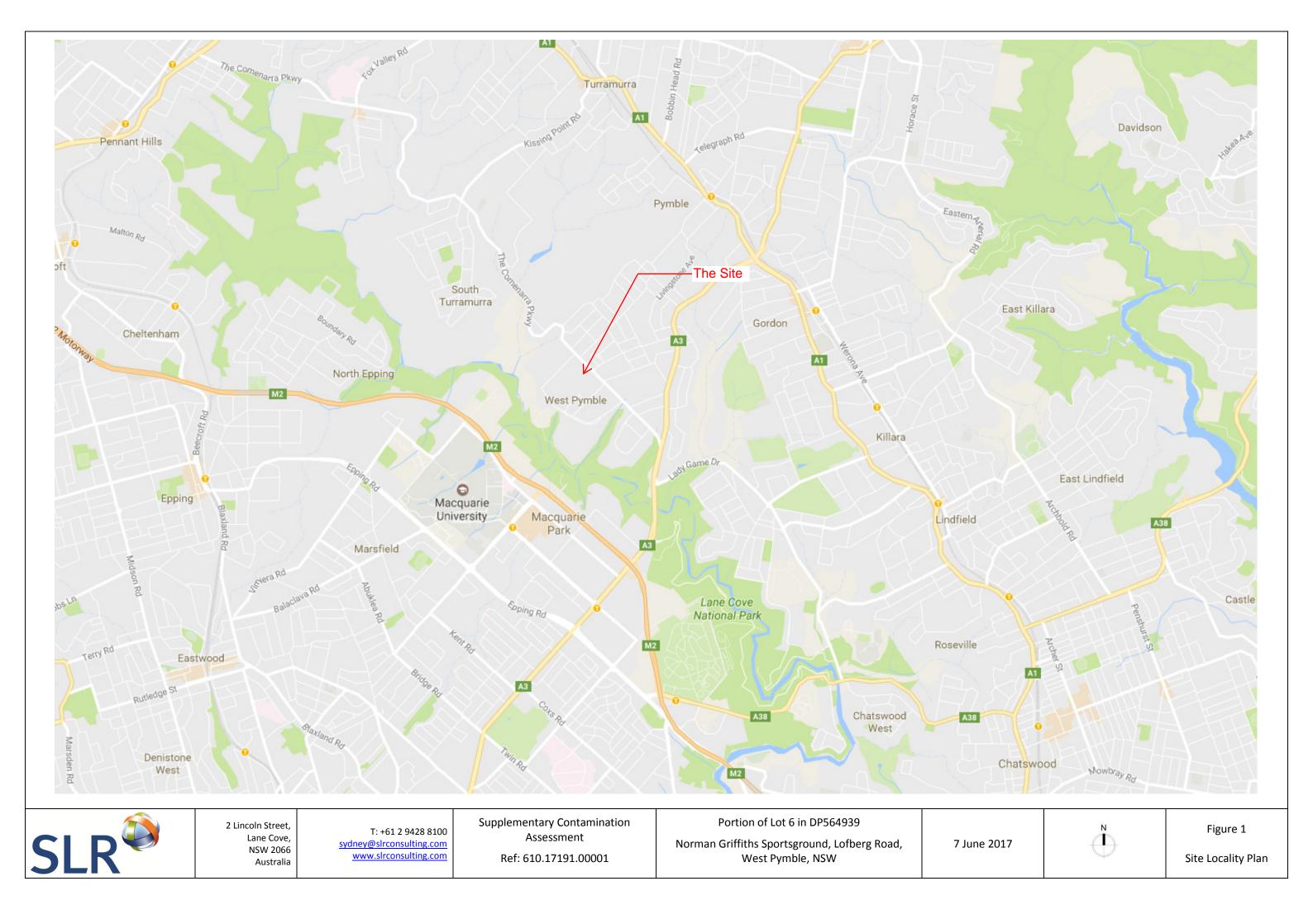
SLR 2017, 'Stage 1 Preliminary Site Investigation, Norman Griffiths Sportsground, Portion of Lot 6 in DP564939, Lofberg Road, West Pymble, NSW' dated 3 May 2017, ref: 610.17191-R01-v1.0.

13 LIMITATIONS

This report is for the exclusive use of Ku-ring-gai Council. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from SLR Consulting.

This report has been prepared based on the scope of services (see below). SLR Consulting cannot be held responsible to the Client and/or others for any matters outside the agreed scope of services. Other parties should not rely upon this report and should make their own enquiries and obtain independent advice in relation to such matters.

This report has been prepared by SLR Consulting with reasonable skill, care and diligence, and taking account of the timescale and resources allocated to it by agreement with the Client. Information reported herein is based on the interpretation of data collected (data, surveys, analyses, designs, plans and other information), which has been accepted in good faith as being accurate and valid.


It should be noted that many investigations are based upon an assessment of potentially contaminating processes which may have occurred historically on the site. This assessment is based upon historical records associated with the site. Such records may be inaccurate, absent or contradictory. In addition documents may exist which are not readily available for public viewing.

Except where it has been stated in this report, SLR Consulting has not verified the accuracy or completeness of the data relied upon. Statements, opinions, facts, information, conclusions and/or recommendations made in this report ("conclusions") are based in whole or part on the data obtained, those conclusions are contingent upon the accuracy and completeness of the data. SLR Consulting cannot be held liable should any data, information or condition be incorrect or have been concealed, withheld, misrepresented or otherwise not fully disclosed to SLR Consulting leading to incorrect conclusions.

Should the report be reviewed for any reason, the report must be reviewed in its entirety and in conjunction with the associated Scope of Services. It should be understood that where a report has been developed for a specific purpose, for example a due diligence report for a property vendor, it may not be suitable for other purposes such as satisfying the needs of a purchaser or assessing contamination risks for classifying the site. The report should not be applied for any purpose other than that originally specified at the time the report was issued.

Report logs, figures, laboratory data, drawings, etc. are generated for this report by SLR consultants (unless otherwise stated) based on their individual interpretation of the site conditions at the time the site visit was undertaken. Although SLR consultants undergo training to achieve a standard of field reporting, individual interpretation still varies slightly. Information should not under any circumstances be redrawn for inclusion in other documents or separated from this report in any way.

Figures Report Number 610.17191-R02 Page 1 of 1 FIGURES

S

SLR

SL

Tables Report Number 610.17191-R02 Page 1 of 1 TABLES

Table LR1 Laboratory Analytical Results - Soils

							05400037	0540005	0540007	0540007	0540005	0540007	0540007	0540007-55	0540007	0540007	0540005	0540007	05400074	0540007	05400051151	0540007	0540007		toad, West Pymble,
						Sample Name Description	SE166371.001 TP01/0.0-0.2	SE166371.002 TP02/0.2-0.4	SE166371.003 TP02/0.6-0.8	SE166371.004 TP02/0.8-1.0	SE166371.005 TP03/0.0-0.1	SE166371.006 TP04/0.1-0.3	SE166371.007 TP05/0.3-0.5	SE166371.008 TP05/1.1-1.3	SE166371.009 TP06/0.0-0.2	SE166371.010 TP06/0.2-0.4	SE166371.011 TP07/0.0-0.1	SE1 66371.012 TP08/0.15-0.35		SE166371.014 TP10/0.7-0.9	SE166371.015 TP10/0.1-0.3	SE166371.016 TP10/0.7-0.9	SE166371.017 TP10/1.3-1.5	SE166371.018 TP11/0.3-0.5	SE166371.019 TP11/1.0-1.2
						Sample Date Matrix	6-6-2017 Soil	6-6-2017 Soil	6-6-2017 Soil	6-6-2017 Soil	6-6-2017 Soil	6-6-2017 Soil	6-6-2017 Soil	6-6-2017 Soil											
		Direct Contact	Soil Vapour	Soil Vapour	M anagement		301	3011	3011		3011	301	30	5011	301	30	301		301		3011	301	301	3011	
		HIL -	Intrusion HSL C	Intrusion HSL C	Limits for TPH																				
		Recreational C (mg/kg)	0 m to <1 m (mg/kg)	1 m to <2m (mg/kg)	Fraction F1-F4 in soil (mg/kg)																				
Analyte Name BTEXN in Soil	Units					Reporting Limit	Result	Result	Result	Result	Result	Result	Result	Result											
Benzene	mg/kg	120	NL	NL		0.1	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	<0.1	N.A.	N.A.	N.A.	<0.1	<0.1	N.A.	N.A.	N.A.	<0.1	<0.1	N.A.
Toluene Ethylbenzene	mg/kg mg/kg	18000	NL NL	NL NL		0.1	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	<0.1	N.A.	N.A.	N.A. N.A.	<0.1	<0.1	N.A. N.A.	N.A.	N.A. N.A.	<0.1	<0.1	N.A.
m/p-xylene	mg/kg					0.2	N.A.	N.A.	<0.2	N.A.	N.A.	<0.2	N.A.	<0.2	N.A.	N.A.	N.A.	<0.2	<0.2	N.A.	N.A.	N.A.	<0.2	<0.2	N.A.
o-xylene Total Xylenes	mg/kg mg/kg	15000	NL	NL		0.1	N.A.	N.A.	<0.1 <0.3	N.A.	N.A. N.A.	<0.1	N.A.	<0.1	N.A. N.A.	N.A.	N.A.	<0.1	<0.1 <0.3	N.A.	N.A.	N.A.	<0.1	<0.1	N.A.
Naphthalene	mg/kg	1900	NL	NL		0.1	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	<0.1	N.A.	N.A.	N.A.	<0.1	<0.1	N.A.	N.A.	N.A.	<0.1	<0.1	Ń.A.
TRH in Seil																									
Benzene (F0)	mg/kg		NL	NL		0.1	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	<0.1	N.A.	N.A.	N.A.	<0.1	<0.1	N.A.	N.A.	N.A.	<0.1	<0.1	N.A.
TRH C6-C10 TRH C6-C10 minus BTEX (F1)	mg/kg mg/kg		NL	NL	700	25 25	N.A. N.A.	N.A.	<25 <25	N.A.	N.A.	<25 <25	N.A.	<25 <25	N.A. N.A.	N.A.	N.A. N.A.	<25	<25 <25	N.A. N.A.	N.A. N.A.	N.A. N.A.	<25 <25	<25 <25	N.A.
TRH >C10-C16 (F2)	mg/kg				1000	25	N.A.	N.A.	<25	N.A.	N.A.	<25	N.A.	<25	N.A.	N.A.	N.A.	<25	<25	N.A.	N.A.	N.A.	<25	<25	N.A.
TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3)	mg/kg mg/kg		NL	NL	2500	25 90	N.A. N.A.	N.A.	<25 220	N.A.	N.A. N.A.	<25	N.A.	<25	N.A.	N.A.	N.A.	<25	<25 <90	N.A.	N.A.	N.A.	<25	<25 <90	N.A.
TRH >C34-C40 (F4)	mg/kg				10000	120	N.A.	N.A.	<120	N.A.	N.A.	<120	N.A.	<120	N.A.	N.A.	N.A.	<120	<120	N.A.	N.A.	N.A.	<120	<120	Ń.A.
PAH in Soil																									
Naphthalene	mg/kg	1900	NL	NL		0.1	<0.1	<0.1	N.A.	N.A.	<0.1	<0.1	<0.1	N.A.	<0.1	N.A.	<0.1	<0.1	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1
2-methylnaphthalene 1-methylnaphthalene	mg/kg mg/kg					0.1	<0.1	<0.1	N.A. N.A.	N.A.	<0.1	<0.1	<0.1	N.A.	<0.1	N.A.	<0.1	<0.1	<0.1 <0.1	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1
Acenaphthylene	mg/kg					0.1	<0.1	<0.1	N.A.	N.Á.	<0.1	0.1	0.2	N.A.	<0.1	N.A.	<0.1	<0.1	<0.1	N.A.	N.A.	0.2	N.A.	N.A.	<0.1
Acenaphthene Fluorene	mg/kg mg/kg					0.1	<0.1	<0.1	N.A. N.A.	N.A.	<0.1	<0.1	<0.1	N.A.	<0.1	N.A.	<0.1	<0.1	<0.1 <0.1	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1
Phenanthrene	mg/kg					0.1	<0.1	<0.1	N.A.	N.A.	<0.1	1.8	0.1	N.A.	<0.1	N.A.	<0.1	<0.1	0.4	N.A.	N.A.	0.3	N.A.	N.A.	<0.1
Anthracene Fluoranthene	mg/kg mg/kg					0.1	<0.1	<0.1	N.A. N.A.	N.A.	<0.1	0.5 2.0	0.2	N.A.	<0.1	N.A.	<0.1	<0.1	0.2 0.8	N.A.	N.A.	<0.1 0.6	N.A.	N.A.	<0.1
Pyrene	mg/kg					0.1	<0.1	0.2	N.A.	N.A.	<0.1	1.9	0.4	N.A.	<0.1	N.A.	<0.1	<0.1	0.7	N.A.	N.A.	0.6	N.A.	N.A.	<0.1
Benzo(a)anthracene Chrysene	mg/kg mg/kg					0.1	<0.1 <0.1	<0.1	N.A.	N.A.	<0.1	0.5	0.2	N.A.	<0.1	N.A.	<0.1 <0.1	<0.1	0.3 0.3	N.A.	N.A.	0.3	N.A.	N.A.	<0.1 <0.1
Benzo(b&j)fluoranthene	mg/kg					0.1	<0.1	0.1	N.A.	N.A.	<0.1	0.8	0.6	N.A.	<0.1	N.A.	<0.1	<0.1	0.5	N.A.	N.A.	0.5	N.A.	N.A.	<0.1
Benzo(k)fluoranthene Benzo(a)pyrene	mg/kg mg/kg					0.1	<0.1	<0.1	N.A.	N.A.	<0.1	0.5	0.2	N.A.	<0.1	N.A.	<0.1	<0.1	0.3	N.A.	N.A.	0.3	N.A.	N.A. N.A.	<0.1
Indeno(1,2,3-cd) pyrene	mg/kg					0.1	<0.1	<0.1	N.A.	N.A.	<0.1	0.6	0.8	N.A.	<0.1	N.A.	<0.1	<0.1	0.6	N.A.	N.A.	0.7	N.A.	N.A.	<0.1
Dibenzo(ah) anthracene Benzo(ghi) perylene	mg/kg mg/kg					0.1	<0.1	<0.1	N.A.	N.A.	<0.1	<0.1	0.1	N.A.	<0.1	N.A.	<0.1	<0.1	<0.1 0.5	N.A.	N.A.	<0.1 0.7	N.A.	N.A.	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< th=""><th>TEQ</th><th></th><th></th><th></th><th></th><th>0.2</th><th><0.2</th><th><0.2</th><th>N.A.</th><th>N.A.</th><th><0.2</th><th>1.1</th><th>0.0</th><th>N.A.</th><th><0.2</th><th>N.A.</th><th><0.2</th><th><0.2</th><th>0.8</th><th>N.A.</th><th>N.A.</th><th>0.8</th><th>N.A.</th><th>N.A.</th><th><0.2</th></lor=0<>	TEQ					0.2	<0.2	<0.2	N.A.	N.A.	<0.2	1.1	0.0	N.A.	<0.2	N.A.	<0.2	<0.2	0.8	N.A.	N.A.	0.8	N.A.	N.A.	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" th=""><th>TEQ (mg/kg) TEQ (mg/kg)</th><th>3</th><th></th><th></th><th></th><th>0.3</th><th><0.3</th><th><0.3</th><th>N.A. N.A.</th><th>N.A.</th><th><0.3</th><th>1.2</th><th>0.9</th><th>N.A.</th><th><0.3</th><th>N.A.</th><th><0.3</th><th><0.3</th><th>0.9</th><th>N.A.</th><th>N.A.</th><th>0.9</th><th>N.A.</th><th>N.A.</th><th><0.3</th></lor=lor></lor=lor 	TEQ (mg/kg) TEQ (mg/kg)	3				0.3	<0.3	<0.3	N.A. N.A.	N.A.	<0.3	1.2	0.9	N.A.	<0.3	N.A.	<0.3	<0.3	0.9	N.A.	N.A.	0.9	N.A.	N.A.	<0.3
Total PAH (18)	mg/kg					0.8	<0.8	<0.8	N.A.	N.A.	<0.8	11	4.5	N.A.	<0.8	N.A.	<0.8	<0.8	5.0	N.A.	N.A.	4.9	N.A.	N.A.	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	300				0.8	<0.8	<0.8	N.A.	N.A.	<0.8	11	4.5	N.A.	<0.8	N.A.	<0.8	<0.8	5.0	N.A.	N.A.	4.9	N.A.	N.A.	<0.8
OCP in Soll																									
Hexachlorobenzene (HCB) Alpha BHC	mg/kg mg/kg	10				0.1	N.A. N.A.	<0.1	N.A.	N.A.	N.A. N.A.	<0.1	N.A.	N.A.	N.A.	N.A.	N.A. N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.
Lindane	mg/kg					0.1	N.A.	<0.1	N.A.	N.A.	N.A.	<0.1	N.Á.	N.A.	N.A.	N.Á.	N.A.	<0.1	N.A.	Ń.A.	<0.1	N.A.	N.A.	N.Á.	N.A.
Heptachlor Aldrin	mg/kg mg/kg	10				0.1	N.A.	<0.1	N.A. N.A.	N.A.	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.	N.A.	<0.1	N.A. N.A.	N.A.	<0.1	N.A. N.A.	N.A.	N.A.	N.A.
Dieldrin	mg/kg	10				0.2	N.A.	<0.2	N.A.	N.A.	N.A.	<0.2	N.A.	N.A.	N.A.	N.A.	N.A.	<0.2	N.A.	N.A.	<0.2	N.A.	N.A.	N.A.	N.A.
Beta BHC Delta BHC	mg/kg mg/kg					0.1	N.A.	<0.1	N.A.	N.A.	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.	N.A. N.A.	<0.1	N.A.	N.A.	<0.1	N.A. N.A.	N.A.	N.A.	N.A.
Heptachlor epoxide	mg/kg					0.1	N.A.	<0.1	N.A.	N.A.	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.
o,p'-DDT p,p'-DDT	mg/kg mg/kg					0.1	N.A. N.A.	<0.1	N.A.	N.A.	N.A. N.A.	<0.1	N.A.	N.A.	N.A.	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.
o,p'-DDE	mg/kg	400		-		0.1	N.A.	<0.1	N.A.	N.A.	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.
p,p'-DDE	mg/kg	400				0.1	N.A.	<0.1	N.A.	N.A.	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.
o,p'-DDD p,p'-DDD	mg/kg mg/kg					0.1	N.A. N.A.	<0.1	N.A. N.A.	N.A.	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.	N.A.	<0.1	N.A. N.A.	N.A. N.A.	<0.1	N.A.	N.A.	N.A.	N.A.
Alpha Endosulfan	mg/kg	340				0.2	N.A.	<0.2	N.A.	N.A.	N.A.	<0.2	N.A.	N.A.	N.A.	N.A.	N.A.	<0.2	N.A.	N.A.	<0.2	N.A.	N.A.	N.A.	N.A.
Beta Endosulfan Gamma Chlordane	mg/kg mg/kg					0.2	N.A. N.A.	<0.2	N.A. N.A.	N.A.	N.A. N.A.	<0.2	N.A.	N.A.	N.A.	N.A.	N.A.	<0.2	N.A. N.A.	N.A.	<0.2	N.A. N.A.	N.A.	N.A.	N.A.
Alpha Chlordane	mg/kg	70				0.1	N.A.	<0.1	N.A.	N.A.	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.
trans-Nonachlor Endrin	mg/kg mg/kg	20				0.1	N.A.	<0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A.	N.A. N.A.	<0.1	N.A. N.A.	N.A. N.A.	<0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.
Endosulfan sulphate	mg/kg					0.1	N.A.	<0.1	N.A.	N.A.	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.
Endrin Aldehyde Methoxychlor	mg/kg mg/kg	400				0.1	N.A. N.A.	<0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.1	N.A. N.A.	N.A. N.A.	<0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.
Endrin Ketone Isodrin	mg/kg					0.1	N.A. N.A.	<0.1 <0.1	N.A.	N.A.	N.A.	<0.1	N.A. N.A.	N.A. N.A.	N.A.	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.	N.A. N.A.	N.A.
Nirex	mg/kg mg/kg	20				0.1	N.A.	<0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.1 <0.1	N.A.	N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.1	N.A. N.A.	N.A. N.A.	<0.1	N.A. N.A.	N.A. N.A.	N.A.	N.A.
PCB in Soil																									
Arochlor 1016	mg/kg					0.2	N.A.	N.A.	<0.2	N.A.	N.A.	N.A.	<0.2	N.A.	N.A.	N.A.	N.A.	N.A.	<0.2	N.A.	N.Á.	N.A.	N.A.	N.A.	N.A.
Arochlor 1221 Arochlor 1232	mg/kg					0.2	N.A.	N.A. N.A.	<0.2	N.A.	N.A.	N.A.	<0.2	N.A.	N.A.	N.A.	N.A.	N.A.	<0.2	N.A.	N.A.	N.A.	N.A.	N.A.	N.A. N.A.
Arochlor 1232 Arochlor 1242	mg/kg mg/kg					0.2	N.A.	N.A. N.A.	<0.2 <0.2	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.2 <0.2	N.A. N.A.	N.A. N.A.	N.A.	N.A. N.A.	N.A. N.A.	<0.2 <0.2	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.
Arochlor 1248	mg/kg					0.2	N.A.	N.A.	<0.2	N.A.	N.A.	N.A.	<0.2	N.A.	N.A.	N.A.	N.A.	N.A.	< 0.2	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
Arochlor 1254 Arochlor 1260	mg/kg mg/kg					0.2	N.A.	N.A. N.A.	<0.2	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.2 <0.2	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A.	<0.2 <0.2	N.A. N.A.	N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A.
Arochlor 1262	mg/kg					0.2	N.A.	N.A.	<0.2	N.A.	N.A.	N.A.	<0.2	N.A.	N.A.	N.A.	N.A.	N.A.	< 0.2	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
Arochlor 1268 Total PCBs (Arochlors)	mg/kg mg/kg	1				0.2	N.A.	N.A. N.A.	<0.2	N.A.	N.A.	N.A.	<0.2 <1	N.A.	N.A.	N.A.	N.A.	N.A.	<0.2 <1	N.A. N.A.	N.A. N.A.	N.A.	N.A.	N.A.	N.A. N.A.
· · · · · · · · · · · · · · · · · · ·																									
Mietals in Soll Arsenic, As	mg/kg	300				3	<3	N.A.	5	9	<3	<3	5	N.A.	<3	<3	<3	4	5	<3	4	N.A.	4	4	N.A.
Cadmium, Cd	mg/kg	90				0.3	<0.3	N.A.	0.3	0.3	<0.3	<0.3	<0.3	N.A.	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	N.A.	<0.3	<0.3	N.A.
Chromium, Cr Copper, Cu	mg/kg mg/kg	300 17000				0.3	6.1 4.8	N.A.	19 15	21 4.5	6.3 5.8	8.4 4.0	14	N.A.	6.1 6.3	1.6	7.3	15 4.5	16 6.9	7.2	13 9.5	N.A. N.A.	1 8 26	11 5.9	N.A. N.A.
Lead, Pb	mg/kg	600				1	12	N.A.	31	20	9	15	14	N.A.	12	5	12	11	15	7	19	N.A.	24	12	N.A.
Nickel, Ni Zinc, Zn	mg/kg	1200				0.5	4.2 18	N.A.	9.3 61	4.4 19	3.0 20	1.7	5.9 27	N.A. N.A.	4.8 25	<0.5 1.4	6.8 43	2.6	2.9 10	0.8	8.6 21	N.A. N.A.	27 39	2.0 13	N.A.
Zinc, Zn Mercury	mg/kg mg/kg	80				0.5	<0.05	N.A.	01 0.06	0.06	<0.05	12 <0.05	<0.05	N.A. N.A.	<0.05	1.4 <0.05	43 <0.05	<0.05	10 <0.05	<0.05	0.19	N.A.	<0.05	1 3 <0.05	N.A. N.A.
Ashestas in Scill																									+
Asbestos in Soll Asbestos Detected	No unit	Yes				0	N.A.	No	N.A.	N.A.	N.A.	No	No	No	N.A.	N.A.	N.A.	No	No	N.A.	N.A.	No	N.A.	No	N.A.
									_																

610.17191.00001 Supplementary Contamination Assessment Norman Griffiths Sportsground Lofberg Road, West Pymble, NSW

Table LR1 Laboratory Analytical Results - Soils

						Sample Name	SE166371.020			SE166371.023	SE166371.024		SE166371.026			SE166371.029	SE166371.030	SE166371.031	SE166371.032	
						Description		TP12/0.3-0.5	TP13/0.0-0.2	TP13/0.6-0.8	TP13/1.1-1.3	TP14/0.0-0.2	TP14/0.3-0.5	TP15/0.0-0.2	TP15/0.68	TP15/1.3-1.5	TP15/2.0-2.2	TP16/0.1-0.3	TP16/0.8-1.0	TP16/
						Sample Date Matrix		6-6-2017 Soil	6-6											
			8-11 V	8-11 M																
		Direct Contact HIL -	Soil Vapour Intrusion HSL C	Soil Vapour Intrusion HSL C	Management Limits for TPH															
		Recreational C	0m to <1m	1 m to <2m	Fraction F1-F4															
Analyte Name	Units	(mg/kg)	(m g/kg)	(mg/kg)	in soil (mg/kg)	Reporting Limit	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Re
BTEXN in Soil																				
Benzene Toluene	mg/kg	120	NL	NL		0.1	<0.1	N.A.	N.A. N.A.	N.A.	<0.1	N.A.	<0.1	N.A.	N.A.	N.A.	<0.1	N.A.	N.A.	N N
Ethylbenzene	mg/kg mg/kg	18000 5300	NL NL	NL NL		0.1	<0.1	N.A.	N.A.	N.A.	<0.1	N.A.	<0.1	N.A.	N.A.	N.A.	<0.1	N.A.	N.A.	N
m/p-×ylene	mg/kg					0.2	<0.2	N.A.	N.A.	N.A.	<0.2	N.A.	<0.2	N.A.	N.A.	N.A.	<0.2	N.A.	N.A.	N
o-xylene	mg/kg		NL	NL		0.1	<0.1	N.A.	N.A.	N.A.	<0.1	N.A.	<0.1	N.A.	N.A.	N.A.	<0.1	N.A.	N.A.	N
Total Xylenes Naphthalene	mg/kg mg/kg	15000	NL	NL		0.3	<0.3	N.A. N.A.	N.A. N.A.	N.A.	<0.3	N.A.	<0.3	N.A.	N.A.	N.A.	<0.3	N.A.	N.A.	N
		1300	NL.	NL																+
TRH in Soil																				
Benzene (F0)	mg/kg		NL	NL		0.1	<0.1	N.A.	N.A.	N.A.	<0.1	N.A.	<0.1	N.A.	N.A.	N.A.	<0.1	N.A.	N.A.	N
TRH C6-C10 TRH C6-C10 minus BTEX (F1)	mg/kg mg/kg		NL	NL	700	25 25	<25 <25	N.A. N.A.	N.A. N.A.	N.A. N.A.	<25 <25	N.A.	<25	N.A.	N.A.	N.A.	<25	N.A.	N.A.	N
TRH >C10-C16 (F2)	mg/kg				1000	25	<25	N.A.	N.A.	N.A.	<25	N.A.	<25	N.A.	N.A.	N.A.	<25	N.A.	N.A.	N
TRH >C10-C16 (F2) - Naphthalene	mg/kg		NL	NL		25	<25	N.A.	N.A.	N.A.	<25	N.A.	<25	N.A.	N.A.	N.A.	<25	N.A.	N.A.	N
TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg				2500	90 120	<90	N.A. N.A.	N.A. N.A.	N.A.	<90	N.A.	200 <120	N.A.	N.A.	N.A.	<90	N.A.	N.A.	N
188 2034-040 (14)	mg/kg				10000	120	\$120	N.A.	N.A.	N.A.	\$120	N.A.	\$120	N.A.	N.A.	N.A.	\$120	N.A.	N.A.	
PAH in Soil																	1			+
Naphthalene	mg/kg	1900	NL	NL		0.1	<0.1	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1	<0.1	N
2-methylnaphthalene 1-methylnaphthalene	mg/kg mg/kg					0.1	<0.1	N.A. N.A.	<0.1 <0.1	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1 <0.1	<0.1 <0.1	N
1-metnyinaphthalene Acenaphthylene	mg/kg mg/kg					0.1	<0.1	N.A. N.A.	0.1	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1	0.3	N
Acenaphthene	mg/kg					0.1	<0.1	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1	N.Á.	N.A.	<0.1	<0.1	N
Fluorene	mg/kg					0.1	<0.1	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1	<0.1	N
Phenanthrene Anthracene	mg/kg mg/kg					0.1	<0.1	N.A. N.A.	0.3 <0.1	N.A.	N.A.	0.3 <0.1	N.A.	N.A.	0.2 <0.1	N.A.	N.A.	0.2 <0.1	1.1	N N
Fluoranthene	mg/kg					0.1	<0.1	N.A.	1.0	N.A.	N.A.	0.7	N.A.	N.A.	0.4	N.A.	N.A.	0.6	2.9	N
Pyrene	mg/kg					0.1	<0.1	N.A.	1.0	N.A.	N.A.	0.7	N.A.	N.A.	0.4	N.A.	N.A.	0.5	2.9	N
Benzo(a)anthracene	mg/kg					0.1	<0.1	N.A.	0.6	N.A.	N.A.	0.4	N.A.	N.A.	0.2	N.A.	N.A.	0.3	1.5	N
Chrysene Benzo(b&j)fluoranthene	mg/kg mg/kg					0.1	<0.1	N.A. N.A.	0.5 0.8	N.A.	N.A.	0.3	N.A.	N.A.	0.2	N.A.	N.A.	0.2	1.1	N
Benzo(k)fluoranthene	mg/kg					0.1	<0.1	N.A.	0.5	N.A.	N.A.	0.3	N.A.	N.A.	0.2	N.Á.	N.A.	0.2	1.0	N N
Benzo(a) pyrene	mg/kg					0.1	<0.1	N.A.	0.8	N.A.	N.A.	0.4	N.A.	N.A.	0.3	N.A.	N.A.	0.3	2.0	N
Indeno(1,2,3-cd)pyrene	mg/kg					0.1	<0.1	N.A. N.A.	0.6 <0.1	N.A.	N.A.	0.3 <0.1	N.A.	N.A.	0.2 <0.1	N.A.	N.A.	0.3 <0.1	1.3	N
Dibenzo(ah) anthracene Benzo(ghi)perylene	mg/kg mg/kg					0.1	<0.1	N.A.	0.7	N.A.	N.A.	0.4	N.A.	N.A.	0.3	N.A.	N.A.	0.3	2.1	N
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td></td><td></td><td></td><td></td><td>0.2</td><td><0.2</td><td>N.A.</td><td>1.1</td><td>N.A.</td><td>N.A.</td><td>0.6</td><td>N.A.</td><td>N.A.</td><td>0.3</td><td>N.Á.</td><td>N.A.</td><td>0.4</td><td>2.9</td><td>N</td></lor=0<>	TEQ					0.2	<0.2	N.A.	1.1	N.A.	N.A.	0.6	N.A.	N.A.	0.3	N.Á.	N.A.	0.4	2.9	N
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>3</td><td></td><td></td><td></td><td>0.3</td><td><0.3</td><td>N.A.</td><td>1.2</td><td>N.A.</td><td>N.A.</td><td>0.7</td><td>N.A.</td><td>N.A.</td><td>0.4</td><td>N.A.</td><td>N.A.</td><td>0.5</td><td>2.9</td><td>N</td></lor=lor<>	TEQ (mg/kg)	3				0.3	<0.3	N.A.	1.2	N.A.	N.A.	0.7	N.A.	N.A.	0.4	N.A.	N.A.	0.5	2.9	N
Carcinogenic PAHs, BaP TEQ <lor=lor 2<br="">Total PAH (18)</lor=lor>	TEQ (mg/kg)					0.2	<0.2	N.A. N.A.	1.1 7.0	N.A.	N.A.	0.6	N.A.	N.A.	0.4	N.A.	N.A.	0.5	2.9 19	N
Total PAH (NEPM/WHO 16)	mg/kg mg/kg	300				0.8	<0.8	N.A.	7.0	N.A.	N.A.	4.1	N.A.	N.A.	2.4	N.A.	N.A.	3.2	19	N
OCP in Soll								NA		N A		<u> </u>	10.1	L	<u> </u>		L		N 4	<u> </u>
Hexachlorobenzene (HCB) Alpha BHC	mg/kg mg/kg	10				0.1	N.A.	N.A. N.A.	N.A. N.A.	N.A.	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.	N.A.	N
Lindane	mg/kg					0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.	N.A.	N
Heptachlor	mg/kg	10				0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.	N.A.	N
Aldrin	mg/kg	10				0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.	N.A.	N
Dieldrin Beta BHC	mg/kg mg/kg					0.2	N.A.	N.A. N.A.	N.A. N.A.	N.A.	N.A. N.A.	N.A.	<0.2	N.A.	N.A.	<0.2	N.A.	N.A.	N.A.	N N
Delta BHC	mg/kg					0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.	N.A.	N
Heptachlor epoxide	mg/kg					0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.	N.A.	N
o,p'-DDT p,p'-DDT	mg/kg					0.1	N.A.	N.A. N.A.	N.A. N.A.	N.A.	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.	N.A.	N N
o,p'-DDE	mg/kg mg/kg					0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.	N.A.	N
p,p'-DDE	mg/kg	400				0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.	N.A.	N
o, p'-DDD	mg/kg					0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.	N.A.	N
p,p'-DDD	mg/kg					0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.	N.A.	N
Alpha Endosulfan Beta Endosulfan	mg/kg mg/kg	340				0.2	N.A.	N.A. N.A.	N.A.	N.A.	N.A.	N.A.	<0.2	N.A.	N.A.	<0.2 <0.2	N.A.	N.A. N.A.	N.A.	N N
Gamma Chlordane	mg/kg					0.2	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	<0.2	N.A.	N.A.	<0.1	N.A.	N.A.	N.A.	N
Alpha Chlordane	mg/kg	70				0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.	N.A.	N
trans-Nonachlor Endrin	mg/kg	20				0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.	N.A.	N
Endrin Endosulfan sulphate	mg/kg mg/kg	20				0.2	N.A.	N.A.	N.A. N.A.	N.A.	N.A.	N.A.	<0.2	N.A.	N.A.	<0.2	N.A.	N.A.	N.A.	N N
Endrin Aldehyde	mg/kg					0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.	N.A.	N
Methoxychlor	mg/kg	400				0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.	N.A.	N
Endrin Ketone Isodrin	mg/kg					0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A.	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A. N.A.	N.A.	N N
Mirex	mg/kg mg/kg	20				0.1	N.A.	N.A. N.A.	N.A.	N.A.	N.A.	N.A.	<0.1	N.A.	N.A.	<0.1	N.A.	N.A.	N.A.	N
												1								
PCB in Soil												ļ		1		L	1			
Arochlor 1016 Arochlor 1221	mg/kg mg/kg					0.2	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.2	N.A.	N.A.	N.A.	<0.2	N.A.	N.A.	N.A.	N.A.	N.A.	<
Arochlor 1221 Arochlor 1232	mg/kg mg/kg					0.2	N.A.	N.A. N.A.	N.A.	<0.2	N.A.	N.A.	N.A.	<0.2	N.A.	N.A.	N.A.	N.A.	N.A.	<
Arochlor 1242	mg/kg					0.2	N.A.	N.A.	N.A.	<0.2	N.A.	N.A.	N.A.	<0.2	N.A.	N.Á.	N.A.	N.A.	N.A.	<(
Arochlor 1248	mg/kg					0.2	N.A.	N.A.	N.A.	<0.2	N.A.	N.A.	N.A.	<0.2	N.A.	N.A.	N.A.	N.A.	N.A.	<(
Arochlor 1254 Arochlor 1260	mg/kg mg/kg					0.2	N.A.	N.A. N.A.	N.A.	<0.2	N.A.	N.A.	N.A.	<0.2	N.A.	N.A.	N.A.	N.A.	N.A.	<
Arochlor 1260 Arochlor 1262	mg/kg mg/kg					0.2	N.A.	N.A. N.A.	N.A. N.A.	<0.2	N.A. N.A.	N.A.	N.A.	<0.2	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	
Arochlor 1268	mg/kg					0.2	N.A.	N.A.	N.A.	<0.2	N.A.	N.A.	N.A.	<0.2	N.A.	N.A.	N.A.	N.A.	N.A.	<
Total PCBs (Arochlors)	mg/kg	1				1	N.A.	N.A.	N.A.	<1	N.A.	N.A.	N.A.	<1	N.A.	N.A.	N.A.	N.A.	N.A.	· · · ·
Metale in Coll															ļ					
Metals in Soll Arsenic, As	mg/kg	300				3	3	4	N.A.	4	<3	N.A.	4	5	N.A.	5	N.A.	N.A.	5	
Cadmium, Cd	mg/kg	90				0.3	<0.3	<0.3	N.A.	0.3	<0.3	N.A.	<0.3	<0.3	N.A.	0.3	N.A.	N.A.	<0.3	<
Chromium, Cr	mg/kg	300 17000				0.3	7.3	15	N.A.	26	7.2	N.A.	15	11	N.A.	29	N.A.	N.A.	28	1
Copper, Cu	mg/kg					0.5	8.9	2.7	N.A.	20	6.5	N.A.	13	10	N.A.	20	N.A.	N.A.	18	5
Lead, Pb Nickel, Ni	mg/kg mg/kg	600 1200				1 0.5	15 7.4	9 1.3	N.A. N.A.	41 29	14 4.7	N.A.	27	25	N.A.	39 21	N.A.	N.A. N.A.	46 30	
Zinc, Zn	mg/kg	30000				0.5	24	3.4	N.A.	59	54	N.A.	32	50	N.A.	49	N.A.	N.A.	48	2
Mercury	mg/kg	80				0.05	<0.05	<0.05	N.A.	<0.05	<0.05	N.A.	0.09	<0.05	N.A.	<0.05	N.A.	N.A.	<0.05	<0
Asbestos in Soli Asbestos Detected	No unit	Yes				0	N.A.	N.A.	No	N.A.	N.A.	No	N.A.	No	N.A.	No	N.A.	No	No	N
	pro ann	1 63			1	v	14.75.	11.75.	110	11.7%	1 10.75.	1 110	1 19.2%	1 110	1 10.75	110	1 0.05	1 110	140	I IN

610.17191.00001 Supplementary Contamination Assessment Norman Griffiths Sportsground Lofberg Road, West Pymble, NSW

E166371.033	SE166371.034
TP16/1.4-1.6 6-6-2017	TP16/1.8-2.0 6-6-2017
Soil	Soil
Result	Result
N.A. N.A.	<0.1 <0.1
N.A.	<0.1
N.A.	<0.2
N.A.	<0.1
N.A. N.A.	<0.3
N.A. N.A.	<0.1 <25
N.A.	<25
N.A.	<25
N.A. N.A.	<25 <90
N.A.	<120
NA	N A
N.A. N.A.	N.A.
N.A.	N.A.
N.A.	N.A.
N.A. N.A.	N.A. N.A.
N.A.	N.Á.
N.A.	N.A.
N.A. N.A.	N.A.
N.A. N.A.	N.A.
N.A.	N.Á.
N.A. N.A.	N.A.
N.A.	N.A.
N.A.	N.A.
N.A.	N.A.
N.A. N.A.	N.A. N.A.
N.A.	N.A.
N.A.	N.A.
N.A. N.A.	N.A. N.A.
N.A. N.A.	N.A. N.A.
N.A.	N.A.
N.A.	N.A.
N.A. N.A.	N.A. N.A.
N.A.	N.A.
N.A. N.A.	N.A. N.A.
N.A.	N.A.
N.A.	N.A.
N.A. N.A.	N.A. N.A.
N.A.	N.A.
N.A.	N.A.
N.A. N.A.	N.A.
N.A.	N.A.
N.A.	N.A.
N.A. N.A.	N.A.
	1.7.5
<0.2 <0.2	N.A. N.A.
<0.2	N.A.
<0.2	N.A.
<0.2	N.A.
<0.2	N.A. N.A.
<0.2	N.A.
<0.2	N.A.
<1	N.A.
5	N.A.
<0.3	N.A. N.A.
5.9	N.Á.
18	N.A.
4.7	N.A.
<0.05	N.A.
N.A.	N.A.

Analyte NameUnitsRepPAH in Soil	Sample Date Matrix Matrix Reporting Limit 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	TP 02/0.6-0.8 6-6-2017 Soil Result N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A	DUP02 6-6-2017 Soil Result N.A. N.A. N.A. N.A. N.A. N.A. N.A.	RPD % #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	SE 166371.038 DUP 02A 6-6-2017 Soil Result N.A. N.A. N.A. N.A.	RPD %	SE 166371.005 TP 03/0.0-0.1 6-6-2017 Soil Result <0.1	SE166371.035 DUP01 6-6-2017 Soil Result	RPD %	SE166371.036 DUP01A 6-6-2017 Soil Result	RPD %	SE166371.024 TP13/1.1-1.3 6-6-2017 Soil Result	DUP03 6-6-2017 Soil Result	RPD %	SE166371.040 DUP03A 6-6-2017 Soil Result	RPD %
Analyte NameUnitsRepPAH in Soil	Sample Date Matrix Matrix Reporting Limit 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	6-6-2017 Soil Result N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A	6-6-2017 Soil Result N.A. N.A. N.A. N.A. N.A. N.A. N.A.	#VALUE! #VALUE! #VALUE! #VALUE!	6-6-2017 Soil Result N.A. N.A. N.A.	#VALUE!	6-6-2017 Soil Result <0.1	6-6-2017 Soil Result		6-6-2017 Soil Result	RPD %	6-6-2017 Soil Result	6-6-2017 Soil Result		6-6-2017 Soil Result	RPD %
Analyte NameUnitsRepPAH in Soil	Matrix Reporting Limit 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Soil Result N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A	Soil Result N.A. N.A. N.A. N.A. N.A. N.A. N.A.	#VALUE! #VALUE! #VALUE! #VALUE!	Soil Result N.A. N.A. N.A. N.A.	#VALUE!	Soil Result <0.1	Soil Result		Soil Result		Soil Result	Soil Result		Soil Result	
PAH in Soil mg/kg Naphthalene mg/kg 2-methylnaphthalene mg/kg 1-methylnaphthalene mg/kg Acenaphthylene mg/kg Acenaphthylene mg/kg Acenaphthene mg/kg Fluorene mg/kg Phenanthrene mg/kg Fluorene mg/kg Phenanthrene mg/kg Pyrene mg/kg Benzo(a)anthracene mg/kg Benzo(a)anthracene mg/kg Benzo(b &j)fluoranthene mg/kg Benzo(b &j)fluoranthene mg/kg Benzo(a)pyrene mg/kg Indeno(1, 2, 3-cd)pyrene mg/kg Benzo(ah)anthracene mg/kg	Reporting Limit 0.1	Result N.A. N.A.	Result N.A. N.A. N.A. N.A. N.A. N.A. N.A.	#VALUE! #VALUE! #VALUE!	Result N.A. N.A. N.A.	#VALUE!	Result <0.1	Result		Result		Result	Result		Result	-
PAH In Soil mg/kg Naphthalene mg/kg 2-methylnaphthalene mg/kg 1-methylnaphthalene mg/kg Acenaphthylene mg/kg Acenaphthene mg/kg Fluorene mg/kg Phenanthrene mg/kg Fluorene mg/kg Phenanthrene mg/kg Fluoranthene mg/kg Pyrene mg/kg Benzo(a)anthracene mg/kg Benzo(bä)fluoranthene mg/kg Benzo(bä)fluoranthene mg/kg Benzo(a)pyrene mg/kg Carcinogenic PAHs, BaP TEQ <lor=0< td=""> TEQ Carcinogenic PAHs, BaP TEQ <lor=0< td=""> TEQ Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg)</lor=lor></lor=lor></lor=0<></lor=0<>	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.	N.A. N.A. N.A. N.A. N.A. N.A. N.A.	#VALUE! #VALUE! #VALUE!	N.A. N.A. N.A.	#VALUE!	<0.1									
Naphthalenemg/kg2-methylnaphthalenemg/kg1-methylnaphthalenemg/kgAcenaphthylenemg/kgAcenaphthenemg/kgFluorenemg/kgPhenanthrenemg/kgPhenanthrenemg/kgFluoranthenemg/kgPyrenemg/kgBenzo(a)anthracenemg/kgBenzo(a)anthracenemg/kgBenzo(baj)fluoranthenemg/kgBenzo(a)pyrenemg/kgBenzo(a)pyrenemg/kgBenzo(a)pyrenemg/kgBenzo(a)pyrenemg/kgBenzo(a)pyrenemg/kgCarcinogenic PAHs, BaP TEQ <lor=0< td="">TEQCarcinogenic PAHs, BaP TEQ <lor=lor 2<="" td="">TEQ (mg/kg)Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td="">TEQ (mg/kg)Total PAH (18)mg/kg</lor=lor></lor=lor></lor=0<>	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	N.A. N.A. N.A. N.A. N.A. N.A.	N.A. N.A. N.A. N.A. N.A.	#VALUE! #VALUE! #VALUE!	N.A. N.A.	#VALUE!		<0.1								
2-methylnaphthalene mg/kg 1-methylnaphthalene mg/kg 1-methylnaphthalene mg/kg Acenaphthylene mg/kg Acenaphthene mg/kg Fluorene mg/kg Phenanthrene mg/kg Phenanthrene mg/kg Fluoranthene mg/kg Pyrene mg/kg Benzo(a)anthracene mg/kg Benzo(båj)fluoranthene mg/kg Benzo(båj)fluoranthene mg/kg Benzo(a)pyrene mg/kg Benzo(a)pyrene mg/kg Benzo(a)pyrene mg/kg Benzo(a)pyrene mg/kg Carcinogenic PAHs, BaP TEQ <lor=0< td=""> TEQ Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg)</lor=lor></lor=lor></lor=lor></lor=lor></lor=lor></lor=0<>	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	N.A. N.A. N.A. N.A. N.A. N.A.	N.A. N.A. N.A. N.A. N.A.	#VALUE! #VALUE! #VALUE!	N.A. N.A.	#VALUE!		< 0.1								
1-methylinaphthalene mg/kg Acenaphthylene mg/kg Acenaphthene mg/kg Fluorene mg/kg Phenanthrene mg/kg Anthracene mg/kg Fluoranthene mg/kg Pyrene mg/kg Benzo(a)anthracene mg/kg Benzo(a)anthracene mg/kg Benzo(b&j)fluoranthene mg/kg Benzo(b&j)fluoranthene mg/kg Benzo(a)pyrene mg/kg Indeno(1,2,3-cd)pyrene mg/kg Dibenzo(ah)anthracene mg/kg Benzo(a)pyrene mg/kg Carcinogenic PAHs, BaP TEQ <lor=0< td=""> TEQ Carcinogenic PAHs, BaP TEQ <lor=lor< td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg)</lor=lor></lor=lor></lor=lor></lor=lor<></lor=0<>	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	N.A. N.A. N.A. N.A. N.A.	N.A. N.A. N.A. N.A.	#VALUE! #VALUE!	N.A.	<u>}</u>			#VALUE!	< 0.1	#VALUE!	N.A.	N.A.	#VALUE!	N.A.	#VALUE!
Acenaphthylene mg/kg Acenaphthylene mg/kg Acenaphthene mg/kg Fluorene mg/kg Phenanthrene mg/kg Anthracene mg/kg Fluoranthene mg/kg Pyrene mg/kg Benzo(a)anthracene mg/kg Chrysene mg/kg Benzo(b&j)fluoranthene mg/kg Benzo(k)fluoranthene mg/kg Benzo(a)pyrene mg/kg Dibenzo(ah)anthracene mg/kg Benzo(a)ipyrene mg/kg Carcinogenic PAHs, BaP TEQ <lor=0< td=""> TEQ Carcinogenic PAHs, BaP TEQ <lor=lor< td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg) Total PAH (18) mg/kg</lor=lor></lor=lor<></lor=0<>	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	N.A. N.A. N.A. N.A.	N.A. N.A. N.A.	#VALUE!			<0.1	< 0.1	#VALUE!	< 0.1	#VALUE!	N.A.	N.A.	#VALUE!	N.A.	#VALUE!
Acenaphthene mg/kg Fluorene mg/kg Phenanthrene mg/kg Anthracene mg/kg Fluoranthene mg/kg Pyrene mg/kg Benzo(a)anthracene mg/kg Chrysene mg/kg Benzo(b&j)fluoranthene mg/kg Benzo(k)fluoranthene mg/kg Benzo(a)pyrene mg/kg Dibenzo(ah)anthracene mg/kg Dibenzo(ah)anthracene mg/kg Benzo(a)pyrene mg/kg Carcinogenic PAHs, BaP TEQ <lor=0< td=""> TEQ Carcinogenic PAHs, BaP TEQ <lor=lor< td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg)</lor=lor></lor=lor></lor=lor></lor=lor></lor=lor></lor=lor<></lor=0<>	0.1 0.1 0.1 0.1 0.1 0.1 0.1	N.A. N.A. N.A.	N.A. N.A.	1	NI A	#VALUE!	<0.1	< 0.1	#VALUE!	< 0.1	#VALUE!	N.A.	N.A.	#VALUE!	N.A.	#VALUE!
Fluorene mg/kg Phenanthrene mg/kg Anthracene mg/kg Fluoranthene mg/kg Pyrene mg/kg Benzo(a)anthracene mg/kg Chrysene mg/kg Benzo(b &j)fluoranthene mg/kg Benzo(k)fluoranthene mg/kg Benzo(a)pyrene mg/kg Dibenzo(a) anthracene mg/kg Benzo(a)pyrene mg/kg Dibenzo(a) anthracene mg/kg Benzo(ghi)perylene mg/kg Carcinogenic PAHs, BaP TEQ <lor=0< td=""> TEQ Carcinogenic PAHs, BaP TEQ <lor=lor< td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg)</lor=lor></lor=lor></lor=lor></lor=lor></lor=lor></lor=lor<></lor=0<>	0.1 0.1 0.1 0.1 0.1 0.1	N.A. N.A.	N.A.	#VALUE!	N.A.	#VALUE!	<0.1	< 0.1	#VALUE!	< 0.1	#VALUE!	N.A.	N.A.	#VALUE!	N.A.	#VALUE!
Phenanthrene mg/kg Anthracene mg/kg Fluoranthene mg/kg Pyrene mg/kg Benzo(a)anthracene mg/kg Benzo(b&j)fluoranthene mg/kg Benzo(b&j)fluoranthene mg/kg Benzo(a)pyrene mg/kg Benzo(a)pyrene mg/kg Benzo(a)pyrene mg/kg Dibenzo(ah)anthracene mg/kg Benzo(ghi)perylene mg/kg Carcinogenic PAHs, BaP TEQ <lor=0< td=""> TEQ Carcinogenic PAHs, BaP TEQ <lor=lor< td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg)</lor=lor></lor=lor></lor=lor></lor=lor<></lor=0<>	0.1 0.1 0.1 0.1	N.A.	1		N.A.	#VALUE!	<0.1	< 0.1	#VALUE!	< 0.1	#VALUE!	N.A.	N.A.	#VALUE!	N.A.	#VALUE!
Anthracene mg/kg Fluoranthene mg/kg Pyrene mg/kg Benzo(a)anthracene mg/kg Benzo(b&j)fluoranthene mg/kg Benzo(b&j)fluoranthene mg/kg Benzo(a)pyrene mg/kg Indeno(1,2,3-cd)pyrene mg/kg Dibenzo(ah)anthracene mg/kg Benzo(ghi)perylene mg/kg Carcinogenic PAHs, BaP TEQ <lor=0< td=""> TEQ Carcinogenic PAHs, BaP TEQ <lor=lor< td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg)</lor=lor></lor=lor></lor=lor></lor=lor<></lor=0<>	0.1 0.1 0.1			#VALUE!	N.A.	#VALUE!	<0.1	< 0.1	#VALUE!	< 0.1	#VALUE!	N.A.	N.A.	#VALUE!	N.A.	#VALUE!
Anthracene mg/kg Fluoranthene mg/kg Pyrene mg/kg Benzo(a)anthracene mg/kg Benzo(a)anthracene mg/kg Benzo(b\u00e4)fluoranthene mg/kg Benzo(a)pyrene mg/kg Indeno(1,2,3-cd)pyrene mg/kg Dibenzo(ah)anthracene mg/kg Benzo(ghi)perylene mg/kg Carcinogenic PAHs, BaP TEQ <lor=0< td=""> TEQ Carcinogenic PAHs, BaP TEQ <lor=lor< td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg) Total PAH (18) mg/kg</lor=lor></lor=lor<></lor=0<>	0.1 0.1	N.A.	N.A.	#VALUE!	N.A.	#VALUE!	<0.1	<0.1	#VALUE!	< 0.1	#VALUE!	N.A.	N.A.	#VALUE!	N.A.	#VALUE!
Pyrene mg/kg Benzo(a)anthracene mg/kg Chrysene mg/kg Benzo(b & jfluoranthene mg/kg Benzo(a)pyrene mg/kg Benzo(a)pyrene mg/kg Indeno(1,2,3-cd)pyrene mg/kg Dibenzo(ah)anthracene mg/kg Benzo(ghi)perylene mg/kg Carcinogenic PAHs, BaP TEQ <lor=0< td=""> TEQ Carcinogenic PAHs, BaP TEQ <lor=lor< td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg)</lor=lor></lor=lor></lor=lor></lor=lor<></lor=0<>	0.1		N.A.	#VALUE!	N.A.	#VALUE!	<0.1	< 0.1	#VALUE!	< 0.1	#VALUE!	N.A.	N.A.	#VALUE!	N.A.	#VALUE!
Benzo(a)anthracene mg/kg Chrysene mg/kg Benzo(b&j)fluoranthene mg/kg Benzo(a)pyrene mg/kg Indeno(1,2,3-cd)pyrene mg/kg Dibenzo(ah)anthracene mg/kg Benzo(ghi)perylene mg/kg Carcinogenic PAHs, BaP TEQ <lor=0< td=""> TEQ Carcinogenic PAHs, BaP TEQ <lor=lor< td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg)</lor=lor></lor=lor></lor=lor<></lor=0<>		N.A.	N.A.	#VALUE!	N.A.	#VALUE!	<0.1	< 0.1	#VALUE!	< 0.1	#VALUE!	N.A.	N.A.	#VALUE!	N.A.	#VALUE!
Benzo(a)anthracene mg/kg Chrysene mg/kg Benzo(b&j)fluoranthene mg/kg Benzo(a)pyrene mg/kg Benzo(a)pyrene mg/kg Indeno(1,2,3-cd)pyrene mg/kg Dibenzo(ah)anthracene mg/kg Benzo(ghi)perylene mg/kg Carcinogenic PAHs, BaP TEQ <lor=0< td=""> TEQ Carcinogenic PAHs, BaP TEQ <lor=lor< td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg)</lor=lor></lor=lor></lor=lor<></lor=0<>		N.A.	N.A.	#VALUE!	N.A.	#VALUE!	<0.1	< 0.1	#VALUE!	< 0.1	#VALUE!	N.A.	N.A.	#VALUE!	N.A.	#VALUE!
Benzo(b &) fluoranthene mg/kg Benzo(k) fluoranthene mg/kg Benzo(a) pyrene mg/kg Indeno(1,2,3-cd) pyrene mg/kg Dibenzo(ah) anthracene mg/kg Benzo(ghi) perylene mg/kg Carcinogenic PAHs, BaP TEQ <lor=0< td=""> TEQ Carcinogenic PAHs, BaP TEQ <lor=lor< td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg) Total PAH (18) mg/kg</lor=lor></lor=lor<></lor=0<>	0.1	N.A.	N.A.	#VALUE!	N.A.	#VALUE!	<0.1	< 0.1	#VALUE!	< 0.1	#VALUE!	N.A.	N.A.	#VALUE!	N.A.	#VALUE!
Benzo(k)fluoranthene mg/kg Benzo(a)pyrene mg/kg Indeno(1,2,3-cd)pyrene mg/kg Dibenzo(ah)anthracene mg/kg Benzo(ghi)perylene mg/kg Carcinogenic PAHs, BaP TEQ <lor=0< td=""> TEQ Carcinogenic PAHs, BaP TEQ <lor=lor< td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg)</lor=lor></lor=lor></lor=lor<></lor=0<>	0.1	N.A.	N.A.	#VALUE!	N.A.	#VALUE!	<0.1	< 0.1	#VALUE!	< 0.1	#VALUE!	N.A.	N.A.	#VALUE!	N.A.	#VALUE!
Benzo(a)pyrene mg/kg Indeno(1,2,3-cd)pyrene mg/kg Dibenzo(ah)anthracene mg/kg Benzo(ghi)perylene mg/kg Carcinogenic PAHs, BaP TEQ <lor=0< td=""> TEQ Carcinogenic PAHs, BaP TEQ <lor=lor< td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg)</lor=lor></lor=lor></lor=lor></lor=lor<></lor=0<>	0.1	N.A.	N.A.	#VALUE!	N.A.	#VALUE!	<0.1	< 0.1	#VALUE!	< 0.1	#VALUE!	N.A.	N.A.	#VALUE!	N.A.	#VALUE!
Indeno(1,2,3-cd)pyrene mg/kg Dibenzo(ah)anthracene mg/kg Benzo(ghi)perylene mg/kg Carcinogenic PAHs, BaP TEQ <lor=0< td=""> TEQ Carcinogenic PAHs, BaP TEQ <lor=lor< td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg)</lor=lor></lor=lor></lor=lor<></lor=0<>	0.1	N.A.	N.A.	#VALUE!	N.A.	#VALUE!	<0.1	< 0.1	#VALUE!	< 0.1	#VALUE!	N.A.	N.A.	#VALUE!	N.A.	#VALUE!
Dibenzo(ah)anthracene mg/kg Benzo(ghi)perylene mg/kg Carcinogenic PAHs, BaP TEQ <lor=0< td=""> TEQ Carcinogenic PAHs, BaP TEQ <lor=lor< td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg)</lor=lor></lor=lor></lor=lor<></lor=0<>	0.1	N.A.	N.A.	#VALUE!	N.A.	#VALUE!	<0.1	< 0.1	#VALUE!	< 0.1	#VALUE!	N.A.	N.A.	#VALUE!	N.A.	#VALUE!
Dibenzo(ah)anthracene mg/kg Benzo(ghi)perylene mg/kg Carcinogenic PAHs, BaP TEQ <lor=0< td=""> TEQ Carcinogenic PAHs, BaP TEQ <lor=lor< td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg)</lor=lor></lor=lor></lor=lor<></lor=0<>	0.1	N.A.	N.A.	#VALUE!	N.A.	#VALUE!	<0.1	< 0.1	#VALUE!	< 0.1	#VALUE!	N.A.	N.A.	#VALUE!	N.A.	#VALUE!
Carcinogenic PAHs, BaP TEQ <lor=0< th=""> TEQ Carcinogenic PAHs, BaP TEQ <lor=lor< td=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg) Total PAH (18) mg/kg</lor=lor></lor=lor<></lor=0<>	0.1	N.A.	N.A.	#VALUE!	N.A.	#VALUE!	<0.1	< 0.1	#VALUE!	< 0.1	#VALUE!	N.A.	N.A.	#VALUE!	N.A.	#VALUE!
Carcinogenic PAHs, BaP TEQ <lor=lor< th=""> TEQ (mg/kg) Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg) Total PAH (18) mg/kg</lor=lor></lor=lor<>	0.1	N.A.	N.A.	#VALUE!	N.A.	#VALUE!	<0.1	< 0.1	#VALUE!	< 0.1	#VALUE!	N.A.	N.A.	#VALUE!	N.A.	#VALUE!
Carcinogenic PAHs, BaP TEQ <lor=lor (mg="" 2="" kg)<br="" teq="">Total PAH (18) mg/kg</lor=lor>	0.2	N.A.	N.A.	#VALUE!	N.A.	#VALUE!	<0.2	< 0.2	#VALUE!	< 0.2	#VALUE!	N.A.	N.A.	#VALUE!	N.A.	#VALUE!
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" th=""> TEQ (mg/kg) Total PAH (18) mg/kg</lor=lor>	0.3	N.A.	N.A.	#VALUE!	N.A.	#VALUE!	< 0.3	< 0.3	#VALUE!	< 0.3	#VALUE!	N.A.	N.A.	#VALUE!	N.A.	#VALUE!
	0.2	N.A.	N.A.	#VALUE!	N.A.	#VALUE!	<0.2	< 0.2	#VALUE!	< 0.2	#VALUE!	N.A.	N.A.	#VALUE!	N.A.	#VALUE!
	0.8	N.A.	N.A.	#VALUE!	N.A.	#VALUE!	<0.8	< 0.8	#VALUE!	< 0.8	#VALUE!	N.A.	N.A.	#VALUE!	N.A.	#VALUE!
Total PAH (NEPM/WHO 16) mg/kg	0.8	N.A.	N.A.	#VALUE!	N.A.	#VALUE!	<0.8	<0.8	#VALUE!	<0.8	#VALUE!	N.A.	N.A.	#VALUE!	N.A.	#VALUE!
Metals in Soli																
Arsenic, As ma/kg	3	5	6	18	7	33	<3	N.A.	#VALUE!	N.A.	#VALUE	<3	3	#VALUE!	<3	#VALUE!
Cadmium, Cd mg/kg	0.3	0.3	< 0.3	#VALUE!	<0.3	#VALUE!	<0.3	N.A.	#VALUE!	N.A.	#VALUE	<0.3	<0.3	#VALUE!	< 0.3	#VALUE!
Chromium, Cr mg/kg	0.3	19	21	10	17	11	6.3	N.A.	#VALUE!	N.A.	#VALUE	7.2	8.3	14	7.9	9
Copper, Cu mg/kg	0.5	15	9.1	49	13	14	5.8	NA	#VALUE!	N.A.	#VALUE	6.5	8.4	26	5.9	10
Lead, Pb mg/kg	1	31	25	21	27	14	9	NA	#VALUE!	N.A.	#VALUE!	14	17	19	18	25
Nickel, Ni mg/kg	•	9.3	5.1	58	10	7	3.0	N.A.	#VALUE!	N.A.	#VALUE!	4.7	6.6	34	4.6	20
Zinc, Zn mg/kg	0.5	61	35	54	50	20	20	N.A.	#VALUE!	N.A.	#VALUE!	54	20	92	15	113
Mercury mg/kg	0.5	0.06	<0.05	#VALUE	0.06	0	<0.05	NA	#VALUE!	N.A.	#VALUE!	< 0.05	<0.05	#VALUE!	< 0.05	#VALUE!

610.17191.00001 Supplementary Contamination Assessment Norman Griffiths Sportsground Lofberg Road, West Pymble, NSW

Appendix A Report Number 610.17191-R02 Page 1 of 1 DETAIL AND LEVEL SURVEY

NOTES:

- 1) CAUTION: SHOULD ANY DEVELOPMENT OR CONSTRUCTION BE PLANNED ON OR NEAR THE BOUNDARIES, THE BOUNDARIES SHOULD BE CLEARLY MARKED ON SITE.
- 2) ALL AREAS AND DIMENSIONS HAVE BEEN COMPILED FROM PLANS MADE AVAILABLE AT THE LAND TITLES OFFICE.

50

8

D.P. 230332

2480

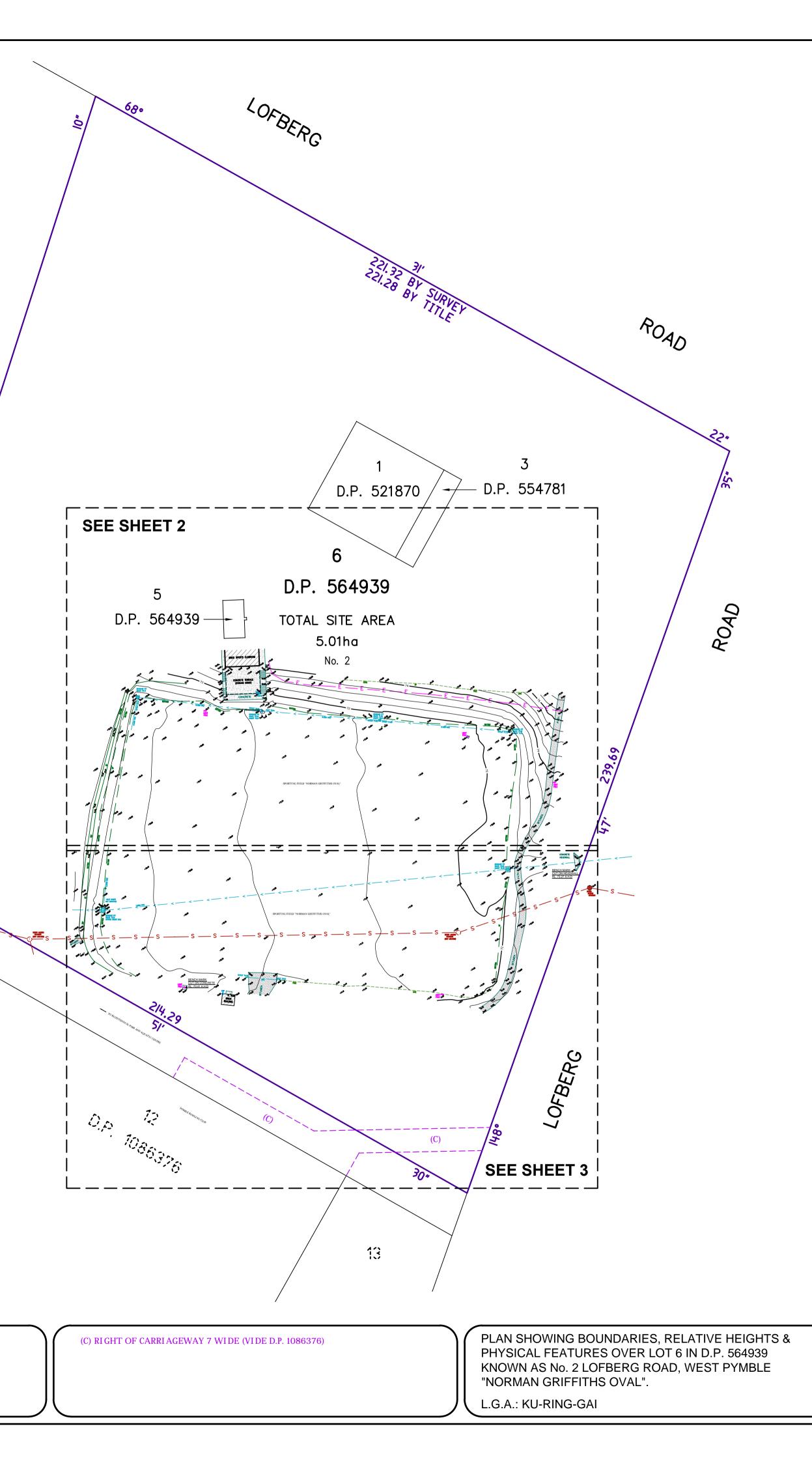
- 3) ORIGIN OF LEVELS ON A.H.D. IS TAKEN FROM P.M. 48947 RL 73.334 A.H.D.
- 4) TREE SPREADS ARE DIAGRAMMATIC ONLY AND ARE NOT SYMMETRICAL.
- 5) UNDERGROUND (NON VISIBLE) SERVICE LINES HAVE BEEN SHOWN FROM "DIAL BEFORE YOU DIG" SERVICE AUTHORITY RECORDS & ARE DIAGRAMMATIC ONLY IN REGARD TO THEIR POSITION & WIDTH UNLESS STATED OTHERWISE.
- 6) SPOT LEVELS ARE ACCURATE.
- 7) BEARINGS SHOWN ARE ON M.G.A.-(MAP GRID of AUSTRALIA.)

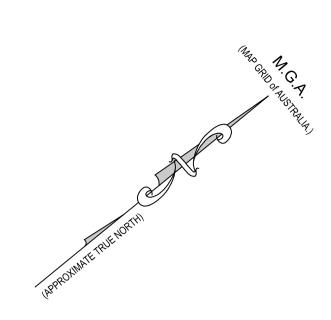
8) CO-ORDINATES ARE ON M.G.A. AND THE ORIGIN IS GPS. INVESTIGATION OF "DIAL BEFORE YOU DIG" UNDERGROUND SERVICES HAS BEEN MADE. DETECTION OF UNDERGROUND SERVICES IS NOT AN INTEGRAL PART OF THIS SURVEY. ALL RELEVANT AUTHORITIES

AN INTEGRAL PART OF THIS SURVET. ALL RELEVANT AUTHORITIES SHOULD BE NOTIFIED PRIOR TO ANY EXCAVATION ON OR NEAR THE SITE DEVELOPERS & EXCAVATORS MAY BE HELD FINANCIALLY

RESPONSIBLE BY THE ASSET OWNER SHOULD THEY DAMAGE UNDERGROUND NETWORKS.

- CARELESS DIGGING CAN: - CAUSE DEATH OR SERIOUS INJURY TO WORKERS AND THE GENERAL PUBLIC - INCONVENIENCE USERS OF ELECTRICITY, GAS, WATER AND COMMUNICATIONS - LEAD TO CRIMINAL PROSECUTION AND DAMAGES CLAIMS - CAUSE EXPENSIVE FINANCIAL LOSSES TO BUSINESS
- CUT OFF EMERGENCY SERVICES - DELAY PROJECT COMPLETION TIMES WHILE THE DAMAGE IS REPAIRED


MINIMISE YOUR RISK AND DIAL BEFORE YOU DIG. TEL. 1100



	Bee & Lethbridge Pty I to	\neg
	SCALE 1:750	
0	7.5 15 22.5 30 37.5	75

Bee & Lethbridge Pty Ltd Suite 2, 14 Starkey Street, PO Box. 330, Forestville, NSW 2087 Phone: 9451 6757 Fax: 9975 3535 Email: survey@beeleth.com.au ABN: 13 003 194 447 www.beeleth.com.au

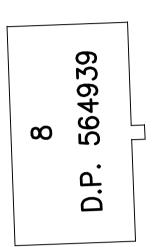
	CLIENT	KU-RING-GAI	COUNC	IL			REF No.	\frown
	PROPERTY	No. 2 LOFBER NORMAN GRI			BLE		193	574
	DATUM	A.H.D.	SCALE	1:750 @ A1	DATE	12/03/2015	SHEET No.	1 of 3
)	SURVEYED	J.G.	DRAWN	H.H.	DWG No.	19374	REV No.	00

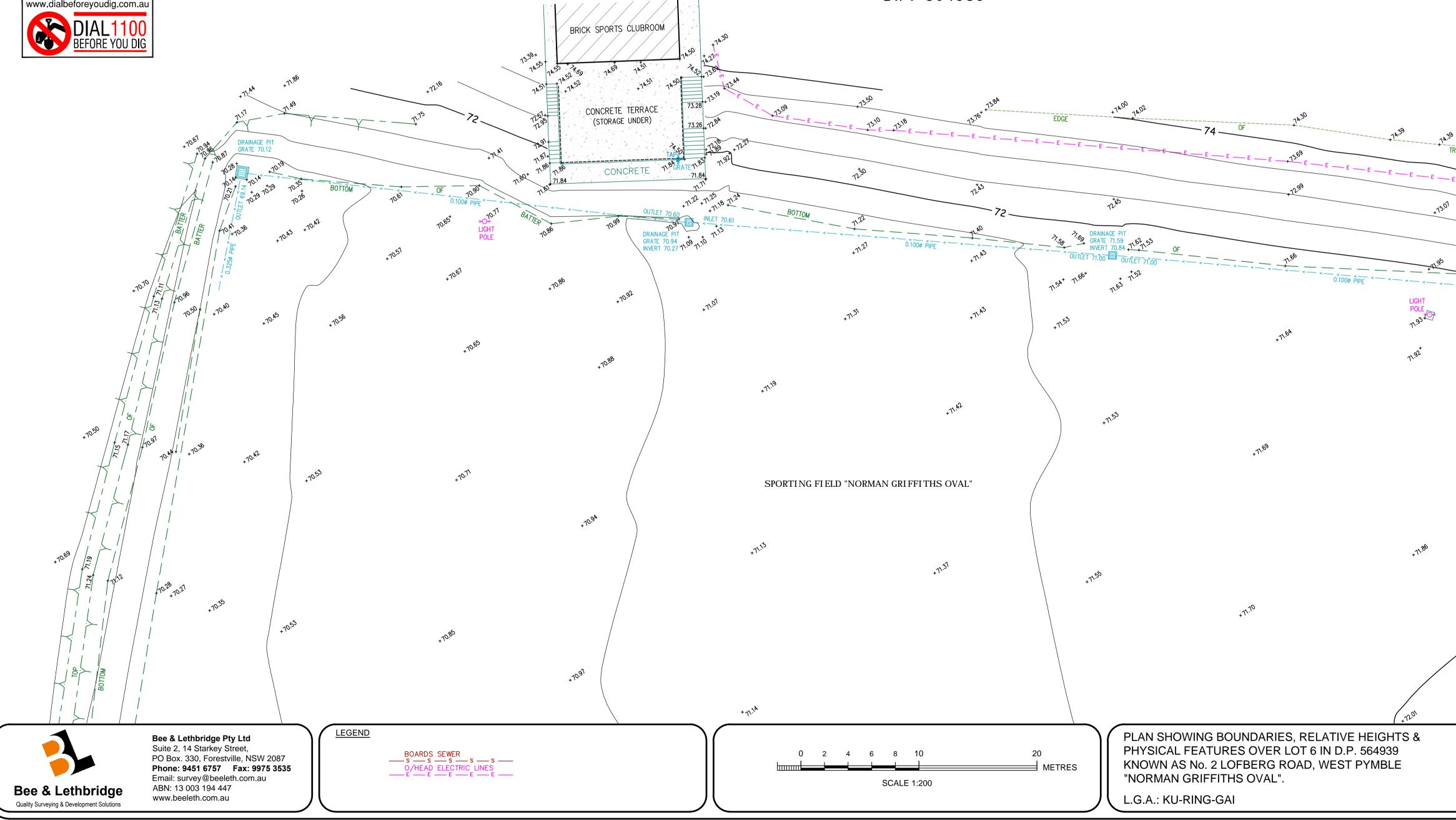
NOTES:

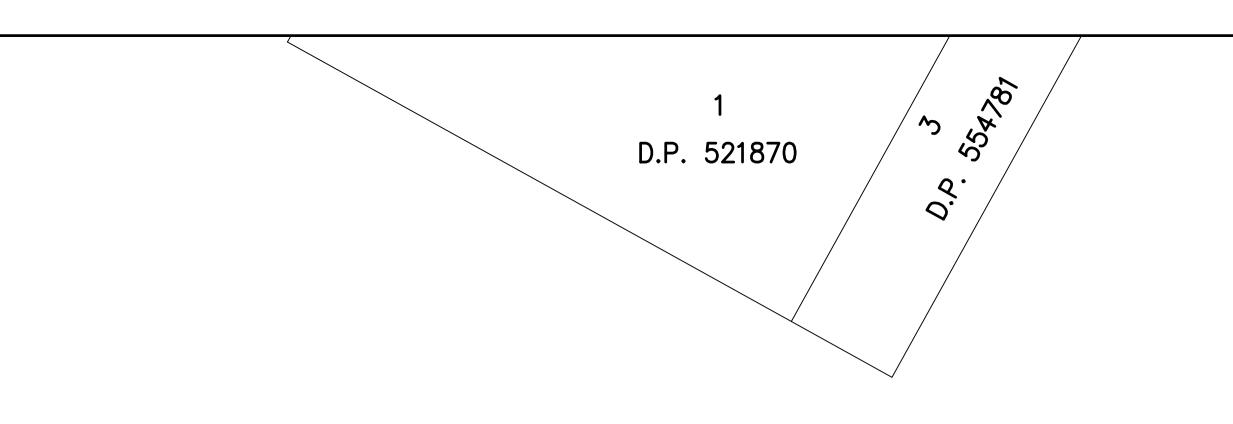
- 1) CAUTION: SHOULD ANY DEVELOPMENT OR CONSTRUCTION BE PLANNED ON OR NEAR THE BOUNDARIES, THE BOUNDARIES SHOULD BE CLEARLY MARKED ON SITE.
- 2) ALL AREAS AND DIMENSIONS HAVE BEEN COMPILED FROM PLANS MADE AVAILABLE AT THE LAND TITLES OFFICE.
- 3) ORIGIN OF LEVELS ON A.H.D. IS TAKEN FROM p.m. 48947 rl 73.334 a.h.d.
- 4) TREE SPREADS ARE DIAGRAMMATIC ONLY AND ARE NOT SYMMETRICAL.
- 5) UNDERGROUND (NON VISIBLE) SERVICE LINES HAVE BEEN SHOWN FROM "DIAL BEFORE YOU DIG" SERVICE AUTHORITY RECORDS & ARE DIAGRAMMATIC ONLY IN REGARD TO THEIR POSITION & WIDTH UNLESS STATED OTHERWISE.
- 6) SPOT LEVELS ARE ACCURATE.
- 7) BEARINGS SHOWN ARE ON M.G.A.-(MAP GRID of AUSTRALIA.)
- 8) CO-ORDINATES ARE ON M.G.A. AND THE ORIGIN IS GPS.

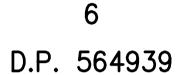
INVESTIGATION OF "DIAL BEFORE YOU DIG" UNDERGROUND SERVICES HAS BEEN MADE. DETECTION OF UNDERGROUND SERVICES IS NOT AN INTEGRAL PART OF THIS SURVEY. ALL RELEVANT AUTHORITIES SHOULD BE NOTIFIED PRIOR TO ANY EXCAVATION ON OR NEAR THE SITE DEVELOPERS & EXCAVATORS MAY BE HELD FINANCIALLY RESPONSIBLE BY THE ASSET OWNER

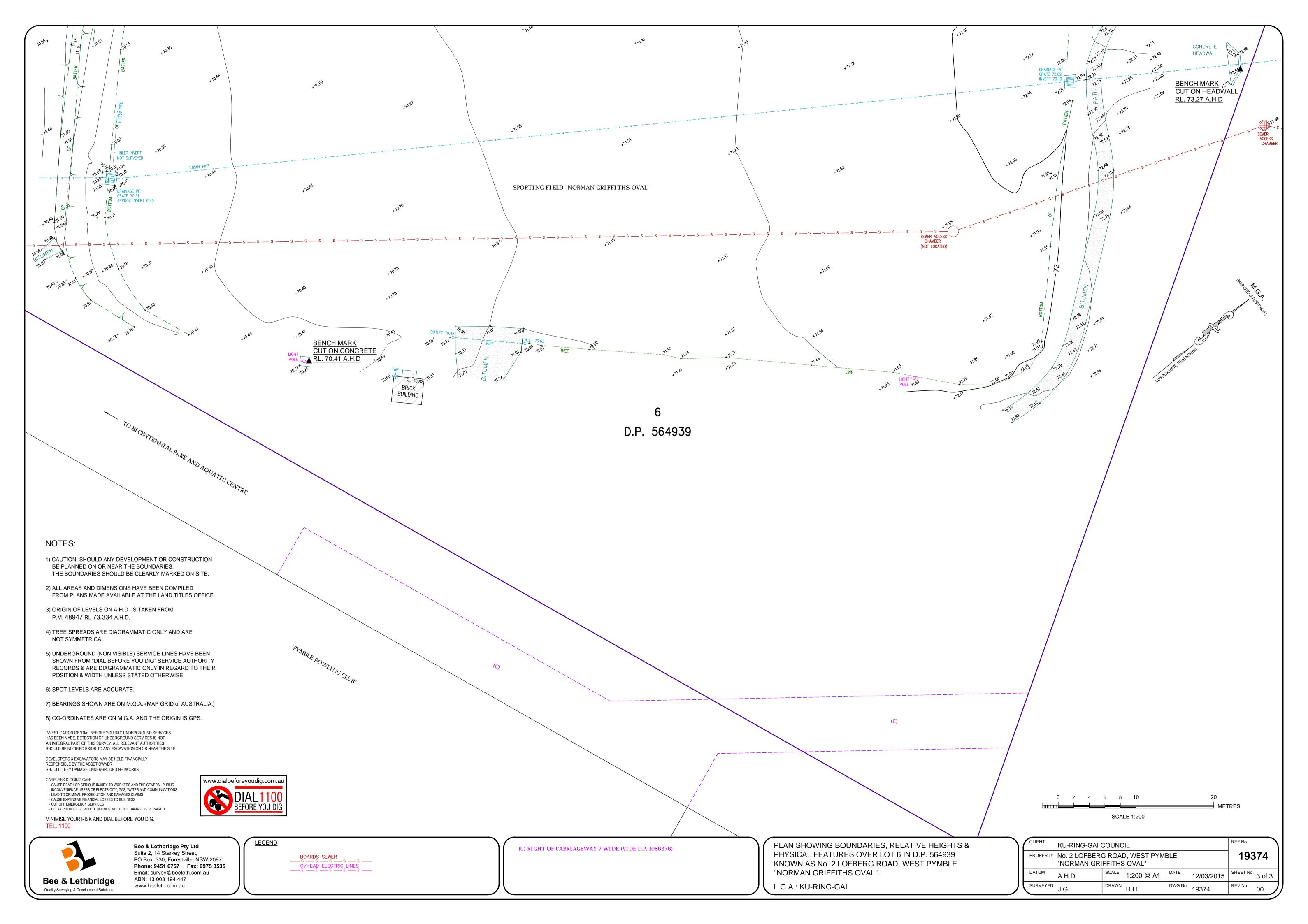
SHOULD THEY DAMAGE UNDERGROUND NETWORKS.


CARELESS DIGGING CAN:


- CAUSE DEATH OR SERIOUS INJURY TO WORKERS AND THE GENERAL PUBLIC - INCONVENIENCE USERS OF ELECTRICITY, GAS, WATER AND COMMUNICATIONS - LEAD TO CRIMINAL PROSECUTION AND DAMAGES CLAIMS
- CAUSE EXPENSIVE FINANCIAL LOSSES TO BUSINESS - CUT OFF EMERGENCY SERVICES


- DELAY PROJECT COMPLETION TIMES WHILE THE DAMAGE IS REPAIRED MINIMISE YOUR RISK AND DIAL BEFORE YOU DIG.


TEL. 1100



WRROWMER WORM	
TREE TREE	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
CLIENT KU-RING-GAI COUNCIL PROPERTY No. 2 LOFBERG ROAD, WEST PYMBLE "NORMAN GRIFFITHS OVAL" DATUM A.H.D. SURVEYED J.G.	REF No. 19374 SHEET No. 2 of 3 REV No. 00

Appendix B Report Number 610.17191-R02 Page 1 of 1 LOGS

global environme	ental solu	tions	SLR	Consulting Pty Ltd				PIT NUMBER TP01 PAGE 1 OF 1
CLIENT	Ku-	ring-g		uncil 0.17191.00000				
DATE ST	TART	ED _	6/6/17	COMPLETED _ 6/6/17				
				TOR Ken Coles Excavations		u		
NOTES				1		1	1	
	Depth (m)	Graphic Log	Classification Symbol	Material Description		Sample ID Remarks	PID (ppm)	Additional Observations
ΕX		<u>xt 17</u> . <u>x</u> 17 .xt17		TOPSOIL: SAND, fine to medium, brown, moist, loos	e, with silt.			Nil odour or staining.
		<u>\\</u>						
	_	<u>17. x 17</u> . <u>x 17</u> . x				TP01 0.0m - 0.2m,		
	-	<u>i, ši,</u>				PID = 0.0ppm		
		<u></u>						
		<u>. 17</u> . <u>(</u>)		TP01 terminated at 0.2m bgl.				Bucket refusal sandstone bedrock.
	-							
	_							
	0 <u>.5</u>							
	0.0							
14/6/1								
VE.GD1								
	-							
S.GPJ 1								
ST PIT(
0000 TE	-							
7191.00								
610.1								
EST PII	-							
BOREHOLE / TEST PIT 610.17191.00000 TEST PITS.GPJ TRAINING_LIANE.GDT 14/6/17	1.0							

S	enviror		utions	SLR	Consulting Pty Ltd		TES	ST I	PIT NUMBER TP02 PAGE 1 OF 1
					uncil 0.17191.00000				
					COMPLETED 6/6/17				
					TOR Ken Coles Excavations				
	TES								
Method	Water	Depth (m)	Graphic Log	Classification Symbol	Material Description		Sample ID Remarks	PID (ppm)	Additional Observations
ЦХ			<u>x 1</u> / x 1/ x 1/		TOPSOIL: SAND, find to medium, brown, moist, dens	е.			Nil odour or staining.
		- - 0. <u>5</u> - 1. <u>0</u> -			FILL: Sandy CLAY, brown, white and red, sandstone s	gravels.	TP02 0.2m - 0.4m, PID = 0.1ppm 0.1ppm 0.6m - 0.8m, PID = 0.1ppm TP02 0.8m , 1.0m, PID = 0.0ppm		Nil odour or staining. Asphalt gravels. Nil odour or staining. DUP02 + DUP02A Nil odour or staining.
					TP02 terminated at 1.3m bgl.				Target depth.
		- 1 <u>.5</u> - - 2.0							

S			Utions	SLR	Consulting Pty Ltd		TES	ST I	PIT NUMBER TP03 PAGE 1 OF 1
DA EX	TE S CAV	STAR1 /ATIOI	ED _	6/6/17	0.17191.00000 COMPLETED <u>6/6/17</u> COMPLETED <u>6/6/17</u> CTOR Ken Coles Excavations	R.L. SURFACE		I	DATUM
TE	ST P		Έ						
Method	Water	Depth (m)	ohic Log	Classification Symbol	Material Description		Sample ID Remarks	PID (ppm)	Additional Observations
BOREHOLE / TEST PIT 610.17191.00000 TEST PITS.GPJ TRAINING_LIANE.GDT 14/6/17 EX Met	Wat	0. <u>5</u>		Clas	FILL: TOPSOIL, SAND, fine to medium, brown, dry. Clayey SAND: fine to medium, orange, moist, dense. TP03 terminated at 0.4m bgl.		ТР03 0.0m - 0.1m, PID = 0.3ppm 0.1m - 0.3m, PID = 0.0ppm	_	Nil odour or staining. DUP01 +DUP01A Target depth.
BOREHOLE / T		1.0							

S			utions	SLR	Consulting Pty Ltd		TES	ST I	PIT NUMBER TP04 PAGE 1 OF 1
					uncil 0.17191.00000				
DA	TE S	START	red _	6/6/17	COMPLETED _6/6/17				
					TOR Ken Coles Excavations	-	N		
		PIT SIZ						(CHECKED BY
Method	Water	Depth (m)	ohic Log	Classification Symbol	Material Description		Sample ID Remarks	PID (ppm)	Additional Observations
EX					FILL: TOPSOIL, SAND, brown, fine to medium.				
RAINING_LIANE.GDT 14/6/77		- - - - - - - - - - - - - - - - - - -			FILL: Gravelly clayey SAND, fine to medium, dense, cobbles/gravels, some bitumen cobbles/gravels, trace Sandy CLAY: orange, moist, firm.	sandstone brick cobble.	ТР04 0.1m - 0.3m, PID = 0.1ppm 0.6m - 0.8m, PID = 0.0ppm	-	Nil odour or staining.
BOREHOLE / TEST PTI 610:17191.00000 TEST PTIS.GPJ TRAINING_LIANE.GDT 14/6/17		1 <u>.5</u> _ 			TP04 terminated at 1.7m bgl.				Target depth.

S			utions	SLR	Consulting Pty Ltd		TES	ST I	PIT NUMBER TP05 PAGE 1 OF 1
					uncil 0.17191.00000				
DA EX	TE S CAV	STAR1 ATIO	TED _	6/6/17 ITRAC	COMPLETED _ 6/6/17	R.L. SURFACE		I	DATUM
TE	ST P		Έ						
Method	Water	Depth (m)	Graphic Log	Classification Symbol	Material Description		Sample ID Remarks	PID (ppm)	Additional Observations
EX			<u>x 1/</u> 1/ . x 1/		TOPSOIL: SAND, fine to medium, brown, dry/loose.				Nil odour or staining.
		_			FILL: Sandy CLAY, brown, firm, moist, sandstone gra	vels/cobbles.			Nil odour or staining.
		- 0 <u>.5</u>					TP05 0.3m - 0.5m, PID = 0.6ppm	-	Asphalt cobbles and boulders @ 0.4m.
		-							
		1 <u>.0</u>						-	Nil odour or staining.
		_					TP05 1.1m - 1.3m, PID = 0.3ppm	-	
		1.5							
					TP05 terminated at 1.5m bgl.				Bucket refusal log @ 1.0m east end of testpit. Log @ 1.3m west end of testpit.

_					Consulting Pty Ltd				PIT NUMBER TP06 PAGE 1 OF 1
					uncil 0.17191.00000				tsground, Pymble
DA EX EQ TE	TE S CAV UIPI ST F	START ATION	ED _ N CON _ 3T E	<u>6/6/17</u> NTRAC EX	COMPLETED _6/6/17	R.L. SURFACE	I	[DATUM
Method	Water	Depth (m)	ohic Log	Classification Symbol	Material Description		Sample ID Remarks	PID (ppm)	Additional Observations
EX					TOPSOIL: SAND, brown, fine to medium, loose mois SANDSTONE: weathered, fine to medium, white/oran TP06 terminated at 0.4m bgl.		TP06 0.0m - 0.2m, PID = 0.0ppm TP06 0.2m - 0.4m, PID = 0.4ppm		Nil odour or staining. Nil odour or staining. Target depth. Bucket refusal on sandstone bedrock.
		0 <u>.5</u>							

S	5L	R		SLR	Consulting Pty Ltd		TES	ST I	PIT NUMBER TP07		
CL	IEN1		-ring-ç		uncil						
					0.17191.00000		DCATION DATUM				
					TOR Ken Coles Excavations			I			
		311 S12									
Method	Water	Depth (m)	Graphic Log	Classification Symbol	Material Description		Sample ID Remarks	PID (ppm)	Additional Observations		
EX			<u>x¹ 1₇ x</u> 1 ₇ <u>x¹ 1₇</u>		TOPSOIL: SAND, fine to medium, brown, moist, loos	e, with silt.	TP07 0.0m - 0.1m,		Nil odour or staining.		
							PID = 0.0ppm				
		-	· · · · · · ·		SANDSTONE: weathered, white, with clay, moist.		_		Nil odour or staining.		
		_	· · · · ·				TP07 0.1m - 0.3m,				
			· · · · ·				PID = 0.0ppm				
					TP07 terminated at 0.3m bgl.		_		Bucket refusual. Sandstone bedrock.		
		_									
		0 <u>.5</u>									
		_									
		-									
		_									
		-									
		1.0									

S	al enviror		itions	SLR	Consulting Pty Ltd		TES	ST F	PIT NUMBER TP08 PAGE 1 OF 1	
					uncil 0.17191.00000					
DA	TE S	START	ED _	6/6/17	COMPLETED _ 6/6/17	R.L. SURFACE				
EQ	UIPI	MENT	3T E	EX		TEST PIT LOCATION				
		PIT SIZ				LOGGED BY CAC CHECKED BY				
Method	Water	Depth (m)	hic Log	Classification Symbol	Material Description		Sample ID Remarks	PID (ppm)	Additional Observations	
BOREHOLE / TEST PIT 610.17191.00000 TEST PITS.GPJ TRAINING_LIANE.GDT 14/6/17		0.5			TOPSOIL: SAND, fine to medium, brown, dry, loose. FILL: Sandy CLAY, brown/orange, with sandstone co sandstone boulder. CLAY: brown/orange, moist, firm to stiff.	bbles/gravels, trace	TP08 0.15m - 0.35m, PID = 1.2ppm 0.6m - 0.8m, PID = 0.3ppm		Nil odour or staining. Nil odour or staining.	
BOREHOLE / TESI		1.0			n oo terminateu at 0.911 byi.				raigeι σερίπ.	

S	l enviro		utions	SLR	Consulting Pty Ltd		TES	ST I	PIT NUMBER TP09 PAGE 1 OF 1
					uncil 0.17191.00000				
DA EX EC TE	TE S CAV UIP ST F	START /ATION MENT PIT SIZ	ED N CON 	<u>6/6/17</u> ITRAC EX	COMPLETED _ 6/6/17	R.L. SURFACE	I	[DATUM
Method	Water	Depth (m)	Graphic Log	Classification Symbol	Material Description		Sample ID Remarks	PID (ppm)	Additional Observations
EX		- - 0. <u>5</u> - - - - - - -			FILL: Gravelly sandy CLAY, brown, some sandstone of gravels, trace igneous/asphalt cobbles.	gravels, some asphalt,	TP09 0.2m - 0.4m, PID = 2.1ppm 0.7m - 0.9m, PID = 0.5ppm	-	Nil odour or staining.
		- 1. <u>5</u> - - 2.0			TP09 terminated at 1.3m bgl.				Target depth.

S	enviror		utions	SLR	Consulting Pty Ltd		TES	ST F	PIT NUMBER TP10 PAGE 1 OF 1
				<u>ai Cou</u> R _ 61	uncil 10.17191.00000				
					7 COMPLETED 6/6/17				
					CTOR Ken Coles Excavations				
	TES		·•					`	
Method	Water	Depth (m)	Graphic Log	Classification Symbol	Material Description		Sample ID Remarks	PID (ppm)	Additional Observations
			<u>, 17</u>		TOPSOIL: SAND, fine to medium, brown.				
					FILL: Gravelly Clayey SAND, brown , moist, asphalt TP10 terminated at 1.5m bgl.	and sandstone gravels.	ТР10 0.1m - 0.3m, PID = 0.7ppm 0.7ppm 0.7m - 0.9m, PID = 0.9ppm 1.3m - 1.5m, PID = 1.1ppm		Metal pieces @ 0.8m Bucket refusal. Potential sandstone bedrock.
		2.0							

glob	5 Dal envir		Jutions	SLR	Consulting Pty Ltd		TES	ST I	PIT NUMBER TP11 PAGE 1 OF 1
					uncil 0.17191.00000				tsground, Pymble
D/ E) E(ATE (CA QUIF	START VATION PMENT	ED _ N CON _ 3T I	6/6/17 ITRAC ≣X	COMPLETED 6/6/17	R.L. SURFACE		[DATUM
	EST DTE		Έ			LOGGED BY CAC		0	CHECKED BY
Method	Water	Depth (m)	Graphic Log	Classification Symbol	Material Description		Sample ID Remarks	PID (ppm)	Additional Observations
BOREHOLE / TEST PIT 610.17191.00000 TEST PITS.GPJ TRAINING_LIANE.GDT 14/6/17					TOPSOIL: SAND, fine to medium, brown, dry, loose. FILL: Sandy CLAY, brown/orange, moist, sandstone of some sandstone cobbles. TP11 terminated at 1.5m bgl.	gravels, trace wood,	TP11 0.3m - 0.5m, PID = 0.8ppm 1.0m - 1.2m, PID = 0.2ppm	-	Nil odour or staining. Nil odour or staining. Nil odour or staining. Bucket refusal, potential sandstone bedrock.

S	enviror		Utions	SLR	Consulting Pty Ltd		TES	st i	PIT NUMBER TP12 PAGE 1 OF 1
					uncil 0.17191.00000				
DA EX EQ TE	TE S CAV UIP ST F	START ATION MENT PIT SIZ	ED _ N CON _ 3T	<u>6/6/17</u> NTRAC EX	COMPLETED _ 6/6/17	R.L. SURFACE	I	[DATUM
Method	Water	Depth (m)	Graphic Log	Classification Symbol	Material Description		Sample ID Remarks	PID (ppm)	Additional Observations
EX		- - 0.5			FILL: TOPSOIL, SAND, brown and grey, fine to mediu becoming dense.		TP12 0.0m - 0.2m, PID = 0.2ppm 0.2ppm 0.2ppm		Nil odour or staining.
		-			TP12 terminated at 0.6m bgl.				Bucket refusal, sandstone bedrock.

S			utions	SLR	Consulting Pty Ltd		TES	ST I	PIT NUMBER TP13 PAGE 1 OF 1		
					uncil 0.17191.00000						
DA	TE S	STAR	red _	6/6/17	COMPLETED _ 6/6/17	R.L. SURFACE					
EQ	UIP	MENT	3T	EX		TEST PIT LOCATION					
	ST F		Έ			LOGGED BY _CAC CHECKED BY					
Method	Water	Depth (m)	Graphic Log	Classification Symbol	Material Description		Sample ID Remarks	PID (ppm)	Additional Observations		
EX		 0.5 1.0 			FILL: Clayey Gravelly SAND, brown, fine to medium, or gravels and metal pieces. Becoming moist. TP13 terminated at 1.3m bgl.	dry, some asphalt	TP13 0.0m - 0.2m, PID = 0.1ppm 0.1ppm 0.6m - 0.8m, PID = 0.6ppm 1.1m - 1.3m, PID = 1.3ppm		Nil odour or staining. Nil odour or staining. Nil odour or staining. DUP03 + DUP03A		
		- 1 <u>.5</u> - - 2.0									

CL	IEN1		-ring-g	jai Cou	Consulting Pty Ltd		Norman Griffiths	s Spor	
					0.17191.00000				
					COMPLETED 6/6/17			[DATUM
							J		
NO	DTES	S							
Method	Water	Depth (m)	Graphic Log	Classification Symbol	Material Description		Sample ID Remarks	PID (ppm)	
		(m)			FILL: Gravelly clayey SAND, brown, fine to medium, of TP14 terminated at 0.5m bgl.	dry, dense.	ТР14 0.0m - 0.2m, PID = 1.9ppm	-	Nil odour or staining. Trace asphalt gravels and metal. Nil odour or staining. Bucket refusal. Suspected sandstone.

S			utions	SLR	Consulting Pty Ltd		TES	ST I	PIT NUMBER TP15 PAGE 1 OF 1	
					uncil 0.17191.00000					
DA	TE S	START	ED _	6/6/17	COMPLETED 6/6/17					
					TOR Ken Coles Excavations	TEST PIT LOCATION				
NO	TES	;								
Method	Water	Depth (m)	Graphic Log	Classification Symbol	Material Description		Sample ID Remarks	PID (ppm)	Additional Observations	
EX					FILL: Gravelly CLAY, brown, dry, hard, with sand, asp cobbles, trace plastic.	halt gravels, trace brick	TP15 0.0m - 0.2m, PID = 0.0ppm	_	Nil odour or staining. Vertical metal pipe 600 x 60 Aluminium cans.	
		0 <u>.5</u> –					TP15 0.6m - 0.8m, PID = 1.6ppm	-	Nil odour or staining. Asphalt boulders	
		1 <u>.0</u> 1 <u>.5</u>					TP15 1.3m - 1.5m, PID = 1.5ppm	-	Nil odour or staining.	
BOREHOLE / TEST PTT 610.17191.00000 TEST PTTS.GPJ TRAINING_LIANE.GDT 14/6/17		- 2 <u>.0</u> -			TP15 terminated at 2.2m bgl.		TP15 2.0m - 2.2m, PID = 0.2ppm	-	Nil odour or staining. Depth beyond inferred base of mound, excavator limits.	
BOREHOLE / TEST PIT 610.17191.00000 TE:		2 <u>.5</u> - - - 3.0								

	51		R ental solur	tions	SLR	Consulting Pty Ltd		TES	ST I	PIT NUMBER TP16 PAGE 1 OF 1	
С	LIE	NT	Ku-	ring-g		uncil 0.17191.00000				rtsground, Pymble	
						COMPLETED _6/6/17					
						TOR Ken Coles Excavations	TEST PIT LOCATION	I			
TE	EST	T Pľ	T SIZ	E			TEST PIT LOCATION LOGGED BY CAC CHECKED BY				
N	ΟΤΙ	ES									
Method	Motor	Water	Depth (m)	Graphic Log	Classification Symbol	Material Description		Sample ID Remarks	PID (ppm)	Additional Observations	
ЦХ						FILL: Silty SAND, brown, dry, loose, trace gravels.				Nil odour or staining.	
			0.5			Becoming gravelly, clayey SAND, brown/orange, fine to gravels.	medium, moist, asphalt	TP16 0.1m - 0.3m, PID = 0.8ppm	-	Nil odour or staining.	
			1.0					0.8m - 1.0m, PID = 2.0ppm	-	Nil odour or staining.	
NE.GDT 14/6/17			1.5			Becoming more clayey. More clayey.		TP16 1.4m - 1.6m, PID = 1.5ppm TP16 1.8m - 2.0m, PID =	-	Nil odour or staining.	
			2.0			TP16 terminated at 2m bgl.		0.0ppm		Test pit beyond inferred base of	
BOREHOLE / TEST PIT 610.17191.00000 TEST PITS.GPJ TRAINING_LIANE.GDT 14/6/17			2.5			TP to terminated at 211 bgi.				Test pit beyond inferred base of mound, excavator bucket limit.	

Appendix C Report Number 610.17191-R02 Page 1 of 1 LABORATORY

ANALYTICAL REPORT

CLIENT DETAILS LABORATORY DETAILS Craig Cowper Huong Crawford Contact Manager SLR CONSULTING AUSTRALIA PTY LTD SGS Alexandria Environmental Client Laboratory Unit 16. 33 Maddox St Address Lego Building, 2 Lincoln Street Address (PO Box 176 NSW LANECOVE 1595) Alexandria NSW 2015 LANECOVE NSW 2066 Telephone 02 9427 8100 Telephone +61 2 8594 0400 02 9427 8200 +61 2 8594 0499 Facsimile Facsimile ccowper@slrconsulting.com au.environmental.sydney@sgs.com Email Email 610.17191.00001 Pymble SGS Reference SE166371 R0 Project 22711 Order Number Date Received 7/6/2017 15/6/2017 Samples 41 Date Reported

COMMENTS

Accredited for compliance with ISO/IEC 17025-Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES

Akheeqar Beniameen Chemist

Kamrul Ahsan Senior Chemist

Bennet Lo Senior Organic Chemist/Metals Chemist

kmln

Ly Kim Ha Organic Section Head

Dong Liang Metals/Inorganics Team Leader

S. Ravender.

Ravee Sivasubramaniam Hygiene Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au

15/06/2017

ANALYTICAL RESULTS

SE166371 R0

VOC's in Soil [AN433] Tested: 9/6/2017

			TP02/0.9-0.8	TP04/0.1-0.3	TP05/1.1-1.3	TP08/0.15-0.35	TP09/0.2-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			6/6/2017	6/6/2017	6/6/2017	6/6/2017	6/6/2017
PARAMETER	UOM	LOR	SE166371.003	SE166371.006	SE166371.008	SE166371.012	SE166371.013
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			TP10/1.3-1.5	TP11/0.3-0.5	TP12/0.0-0.2	TP13/1.1-1.3	TP14/0.3-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL -
			6/6/2017	6/6/2017	6/6/2017	6/6/2017	6/6/2017
PARAMETER	UOM	LOR	SE166371.017	SE166371.018	SE166371.020	SE166371.024	SE166371.026
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			TP15/2.0-2.2	TP16/1.8-2.0
PARAMETER	UOM	LOR	SOIL - 6/6/2017 SE166371.030	SOIL - 6/6/2017 SE166371.034
Benzene	mg/kg	0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1

SE166371 R0

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 9/6/2017

		TP02/0.9-0.8 TF		TP04/0.1-0.3	TP05/1.1-1.3	TP08/0.15-0.35	TP09/0.2-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			6/6/2017	6/6/2017	6/6/2017	6/6/2017	6/6/2017
PARAMETER	UOM	LOR	SE166371.003	SE166371.006	SE166371.008	SE166371.012	SE166371.013
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			TP10/1.3-1.5	TP11/0.3-0.5	TP12/0.0-0.2	TP13/1.1-1.3	TP14/0.3-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			6/6/2017	6/6/2017	6/6/2017	6/6/2017	6/6/2017
PARAMETER	UOM	LOR	SE166371.017	SE166371.018	SE166371.020	SE166371.024	SE166371.026
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			TP15/2.0-2.2	TP16/1.8-2.0
			SOIL	SOIL
			- SUIL	- SOIL
			6/6/2017	6/6/2017
PARAMETER	UOM	LOR	SE166371.030	SE166371.034
TRH C6-C9	mg/kg	20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25

ANALYTICAL RESULTS

SE166371 R0

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 8/6/2017

			TP02/0.9-0.8	TP04/0.1-0.3	TP05/1.1-1.3	TP08/0.15-0.35	TP09/0.2-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			6/6/2017	6/6/2017	6/6/2017	6/6/2017	6/6/2017
PARAMETER	UOM	LOR	SE166371.003	SE166371.006	SE166371.008	SE166371.012	SE166371.013
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	140	56	<45	<45	<45
TRH C29-C36	mg/kg	45	96	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	220	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	240	<110	<110	<110	<110
TRH C10-C40 Total	mg/kg	210	220	<210	<210	<210	<210

			TP10/1.3-1.5	TP11/0.3-0.5	TP12/0.0-0.2	TP13/1.1-1.3	TP14/0.3-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			6/6/2017	6/6/2017	6/6/2017	6/6/2017	6/6/2017
PARAMETER	UOM	LOR	SE166371.017	SE166371.018	SE166371.020	SE166371.024	SE166371.026
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	120
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	110
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	200
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	220
TRH C10-C40 Total	mg/kg	210	<210	<210	<210	<210	<210

			TP15/2.0-2.2	TP16/1.8-2.0
			SOIL -	SOIL -
PARAMETER	UOM	LOR	6/6/2017 SE166371.030	6/6/2017 SE166371.034
TRH C10-C14	mg/kg	20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110
TRH C10-C40 Total	mg/kg	210	<210	<210

SE166371 R0

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 8/6/2017

			TP01/0.0-0.2	TP02/0.2-0.4	TP03/0.0-0.1	TP04/0.1-0.3	TP05/0.3-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			6/6/2017	6/6/2017	6/6/2017	6/6/2017	6/6/2017
PARAMETER	UOM	LOR	SE166371.001	SE166371.002	SE166371.005	SE166371.006	SE166371.007
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	0.1	0.2
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	0.2	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	1.8	0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	0.5	0.2
Fluoranthene	mg/kg	0.1	<0.1	0.2	<0.1	2.0	0.3
Pyrene	mg/kg	0.1	<0.1	0.2	<0.1	1.9	0.4
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	0.5	0.2
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	0.6	0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	0.1	<0.1	0.8	0.6
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	0.5	0.2
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	0.9	0.6
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	0.6	0.8
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	0.5	0.8
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td>1.1</td><td>0.9</td></lor=0<>	TEQ	0.2	<0.2	<0.2	<0.2	1.1	0.9
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td>1.2</td><td>0.9</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	1.2	0.9
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td>1.2</td><td>0.9</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	1.2	0.9
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	11	4.5
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	11	4.5

			TP06/0.0-0.2	TP07/0.0-0.1	TP08/0.15-0.35	TP09/0.2-0.4	TP10/0.7-0.9
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-		-	-
			6/6/2017	6/6/2017	6/6/2017	6/6/2017	6/6/2017
PARAMETER	UOM	LOR	SE166371.009	SE166371.011	SE166371.012	SE166371.013	SE166371.016
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.2
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	0.4	0.3
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	0.2	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	0.8	0.6
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	0.7	0.6
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	0.3	0.3
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	0.3	0.3
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	0.5	0.5
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	0.3	0.3
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	0.6	0.6
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	0.6	0.7
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	0.5	0.7
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td>0.8</td><td>0.8</td></lor=0<>	TEQ	0.2	<0.2	<0.2	<0.2	0.8	0.8
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td>0.9</td><td>0.9</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	0.9	0.9
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td>0.8</td><td>0.8</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	0.8	0.8
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	5.0	4.9
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	5.0	4.9

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 8/6/2017 (continued)

			TP11/1.0-1.2	TP12/0.0-0.2	TP13/0.0-0.2	TP14/0.0-0.2	TP15/0.68
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 5012	- 5012	- 5012	- 5012	- 5012
			6/6/2017	6/6/2017	6/6/2017	6/6/2017	6/6/2017
PARAMETER	UOM	LOR	SE166371.019	SE166371.020	SE166371.022	SE166371.025	SE166371.028
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	0.3	0.3	0.2
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	1.0	0.7	0.4
Pyrene	mg/kg	0.1	<0.1	<0.1	1.0	0.7	0.4
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	0.6	0.4	0.2
Chrysene	mg/kg	0.1	<0.1	<0.1	0.5	0.3	0.2
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	0.8	0.4	0.3
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	0.5	0.3	0.2
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	0.8	0.4	0.3
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	0.6	0.3	0.2
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	0.7	0.4	0.3
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td><0.2</td><td><0.2</td><td>1.1</td><td>0.6</td><td>0.3</td></lor=0<>	TEQ	0.2	<0.2	<0.2	1.1	0.6	0.3
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td>1.2</td><td>0.7</td><td>0.4</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	1.2	0.7	0.4
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>1.1</td><td>0.6</td><td>0.4</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	1.1	0.6	0.4
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	7.0	4.1	2.4
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	7.0	4.1	2.4

			TP16/0.1-0.3	TP16/0.8-1.0	DUP01	DUP01A
			0.01	00"	0.011	0.01
			SOIL	SOIL	SOIL	SOIL
			6/6/2017	6/6/2017	6/6/2017	6/6/2017
PARAMETER	UOM	LOR	SE166371.031	SE166371.032	SE166371.035	SE166371.036
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	0.3	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	0.2	1.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	0.3	<0.1	<0.1
Fluoranthene	mg/kg	0.1	0.6	2.9	<0.1	<0.1
Pyrene	mg/kg	0.1	0.5	2.9	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	0.3	1.5	<0.1	<0.1
Chrysene	mg/kg	0.1	0.2	1.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	0.3	2.0	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	0.2	1.0	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	0.3	2.0	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.3	1.3	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	0.3	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	0.3	2.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td>0.4</td><td>2.9</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ	0.2	0.4	2.9	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>0.5</td><td>2.9</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	0.5	2.9	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.5</td><td>2.9</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	0.5	2.9	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	3.2	19	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	3.2	19	<0.8	<0.8

SE166371 R0

OC Pesticides in Soil [AN420] Tested: 8/6/2017

			SOIL	SOIL			
			JOIL		SOIL	SOIL	SOIL
				-	-	-	-
			6/6/2017	6/6/2017	6/6/2017	6/6/2017	6/6/2017
PARAMETER	UOM	LOR	SE166371.002	SE166371.006	SE166371.012	SE166371.015	SE166371.026
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

SE166371 R0

OC Pesticides in Soil [AN420] Tested: 8/6/2017 (continued)

			TP15/1.3-1.5 SOIL - 6/6/2017
PARAMETER Hexachlorobenzene (HCB)	UOM mg/kg	LOR 0.1	SE166371.029 <0.1
Alpha BHC	mg/kg	0.1	<0.1
Lindane	mg/kg	0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1
Aldrin	mg/kg	0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2
Endrin	mg/kg	0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1
Isodrin	mg/kg	0.1	<0.1
Mirex	mg/kg	0.1	<0.1

SE166371 R0

PCBs in Soil [AN420] Tested: 8/6/2017

			TP02/0.9-0.8	TP05/0.3-0.5	TP09/0.2-0.4	TP13/0.6-0.8	TP15/0.0-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			6/6/2017	6/6/2017	6/6/2017	6/6/2017	6/6/2017
PARAMETER	UOM	LOR	SE166371.003	SE166371.007	SE166371.013	SE166371.023	SE166371.027
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			TP16/1.4-1.6 SOIL - 6/6/2017
PARAMETER	UOM	LOR	SE166371.033
Arochlor 1016	mg/kg	0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1

SE166371 R0

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 13/6/2017

			TP01/0.0-0.2	TP02/0.9-0.8	TP02/0.8-1.0	TP03/0.0-0.1	TP04/0.1-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			6/6/2017	6/6/2017	6/6/2017	6/6/2017	6/6/2017
PARAMETER	UOM	LOR	SE166371.001	SE166371.003	SE166371.004	SE166371.005	SE166371.006
Arsenic, As	mg/kg	3	<3	5	9	<3	<3
Cadmium, Cd	mg/kg	0.3	<0.3	0.3	0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	6.1	19	21	6.3	8.4
Copper, Cu	mg/kg	0.5	4.8	15	4.5	5.8	4.0
Lead, Pb	mg/kg	1	12	31	20	9	15
Nickel, Ni	mg/kg	0.5	4.2	9.3	4.4	3.0	1.7
Zinc, Zn	mg/kg	0.5	18	61	19	20	12

			TP05/0.3-0.5	TP06/0.0-0.2	TP06/0.2-0.4	TP07/0.0-0.1	TP08/0.15-0.35
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			6/6/2017	6/6/2017	6/6/2017	6/6/2017	6/6/2017
PARAMETER	UOM	LOR	SE166371.007	SE166371.009	SE166371.010	SE166371.011	SE166371.012
Arsenic, As	mg/kg	3	5	<3	<3	<3	4
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	14	6.1	1.6	7.3	15
Copper, Cu	mg/kg	0.5	34	6.3	1.1	17	4.5
Lead, Pb	mg/kg	1	14	12	5	12	11
Nickel, Ni	mg/kg	0.5	5.9	4.8	<0.5	6.8	2.6
Zinc, Zn	mg/kg	0.5	27	25	1.4	43	7.3

			TP09/0.2-0.4	TP10/0.7-0.9	TP10/0.1-0.3	TP10/1.3-1.5	TP11/0.3-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			6/6/2017	6/6/2017	6/6/2017	6/6/2017	6/6/2017
PARAMETER	UOM	LOR	SE166371.013	SE166371.014	SE166371.015	SE166371.017	SE166371.018
Arsenic, As	mg/kg	3	5	<3	4	4	4
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	16	7.2	13	18	11
Copper, Cu	mg/kg	0.5	6.9	1.2	9.5	26	5.9
Lead, Pb	mg/kg	1	15	7	19	24	12
Nickel, Ni	mg/kg	0.5	2.9	0.8	6.6	27	2.0
Zinc, Zn	mg/kg	0.5	10	4.4	21	39	13

			TP12/0.0-0.2	TP12/0.3-0.5	TP13/0.6-0.8	TP13/1.1-1.3	TP14/0.3-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 6/6/2017	- 6/6/2017	- 6/6/2017	- 6/6/2017	- 6/6/2017
PARAMETER	UOM	LOR	SE166371.020	SE166371.021	SE166371.023	SE166371.024	SE166371.026
Arsenic, As	mg/kg	3	3	4	4	<3	4
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	7.3	15	26	7.2	15
Copper, Cu	mg/kg	0.5	8.9	2.7	20	6.5	13
Lead, Pb	mg/kg	1	15	9	41	14	27
Nickel, Ni	mg/kg	0.5	7.4	1.3	29	4.7	17
Zinc, Zn	mg/kg	0.5	24	3.4	59	54	32

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 13/6/2017 (continued)

			TP15/0.0-0.2	TP15/1.3-1.5	TP16/0.8-1.0	TP16/1.4-1.6	DUP02
			SOIL	SOIL	SOIL	SOIL	SOIL
			6/6/2017	6/6/2017	6/6/2017	6/6/2017	6/6/2017
PARAMETER	UOM	LOR	SE166371.027	SE166371.029	SE166371.032	SE166371.033	SE166371.037
Arsenic, As	mg/kg	3	5	5	5	5	6
Cadmium, Cd	mg/kg	0.3	<0.3	0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	11	29	28	13	21
Copper, Cu	mg/kg	0.5	10	20	18	5.9	9.1
Lead, Pb	mg/kg	1	25	39	46	18	25
Nickel, Ni	mg/kg	0.5	6.9	21	30	4.7	5.1
Zinc, Zn	mg/kg	0.5	50	49	48	22	35

			DUP02A	DUP03	DUP03A
			SOIL -	SOIL -	SOIL -
		1.05	6/6/2017	6/6/2017	6/6/2017
PARAMETER	UOM	LOR	SE166371.038	SE166371.039	SE166371.040
Arsenic, As	mg/kg	3	7	3	<3
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	17	8.3	7.9
Copper, Cu	mg/kg	0.5	13	8.4	5.9
Lead, Pb	mg/kg	1	27	17	18
Nickel, Ni	mg/kg	0.5	10	6.6	4.6
Zinc, Zn	mg/kg	0.5	50	20	15

SE166371 R0

Mercury in Soil [AN312] Tested: 13/6/2017

			TP01/0.0-0.2	TP02/0.9-0.8	TP02/0.8-1.0	TP03/0.0-0.1	TP04/0.1-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			6/6/2017	6/6/2017	6/6/2017	6/6/2017	6/6/2017
PARAMETER	UOM	LOR	SE166371.001	SE166371.003	SE166371.004	SE166371.005	SE166371.006
Mercury	mg/kg	0.05	<0.05	0.06	0.06	<0.05	<0.05

			TP05/0.3-0.5	TP06/0.0-0.2	TP06/0.2-0.4	TP07/0.0-0.1	TP08/0.15-0.35
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			6/6/2017	6/6/2017	6/6/2017	6/6/2017	6/6/2017
PARAMETER	UOM	LOR	SE166371.007	SE166371.009	SE166371.010	SE166371.011	SE166371.012
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			TP09/0.2-0.4	TP10/0.7-0.9	TP10/0.1-0.3	TP10/1.3-1.5	TP11/0.3-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			6/6/2017	6/6/2017	6/6/2017	6/6/2017	6/6/2017
PARAMETER	UOM	LOR	SE166371.013	SE166371.014	SE166371.015	SE166371.017	SE166371.018
Mercury	mg/kg	0.05	<0.05	<0.05	0.19	<0.05	<0.05

			TP12/0.0-0.2	TP12/0.3-0.5	TP13/0.6-0.8	TP13/1.1-1.3	TP14/0.3-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			6/6/2017	6/6/2017	6/6/2017	6/6/2017	6/6/2017
PARAMETER	UOM	LOR	SE166371.020	SE166371.021	SE166371.023	SE166371.024	SE166371.026
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	0.09

			TP15/0.0-0.2	TP15/1.3-1.5	TP16/0.8-1.0	TP16/1.4-1.6	DUP02
			SOIL	SOIL	SOIL	SOIL	SOIL
			6/6/2017	6/6/2017	6/6/2017	6/6/2017	6/6/2017
PARAMETER	UOM	LOR	SE166371.027	SE166371.029	SE166371.032	SE166371.033	SE166371.037
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			DUP02A	DUP03	DUP03A
			SOIL	SOIL	SOIL
					-
			6/6/2017	6/6/2017	6/6/2017
PARAMETER	UOM	LOR	SE166371.038	SE166371.039	SE166371.040
Mercury	mg/kg	0.05	0.06	<0.05	<0.05

SE166371 R0

Moisture Content [AN002] Tested: 10/6/2017

			TP01/0.0-0.2	TP02/0.2-0.4	TP02/0.9-0.8	TP02/0.8-1.0	TP03/0.0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			6/6/2017	6/6/2017	6/6/2017	6/6/2017	6/6/2017
PARAMETER	UOM	LOR	SE166371.001	SE166371.002	SE166371.003	SE166371.004	SE166371.005
% Moisture	%w/w	0.5	19	16	19	20	9.6

			TP04/0.1-0.3	TP05/0.3-0.5	TP05/1.1-1.3	TP06/0.0-0.2	TP06/0.2-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			6/6/2017	6/6/2017	6/6/2017	6/6/2017	6/6/2017
PARAMETER	UOM	LOR	SE166371.006	SE166371.007	SE166371.008	SE166371.009	SE166371.010
% Moisture	%w/w	0.5	11	16	23	14	7.5

			TP07/0.0-0.1	TP08/0.15-0.35	TP09/0.2-0.4	TP10/0.7-0.9	TP10/0.1-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			6/6/2017	6/6/2017	6/6/2017	6/6/2017	6/6/2017
PARAMETER	UOM	LOR	SE166371.011	SE166371.012	SE166371.013	SE166371.014	SE166371.015
% Moisture	%w/w	0.5	9.6	14	14	14	10

			TP10/0.7-0.9	TP10/1.3-1.5	TP11/0.3-0.5	TP11/1.0-1.2	TP12/0.0-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			6/6/2017	6/6/2017	6/6/2017	6/6/2017	6/6/2017
PARAMETER	UOM	LOR	SE166371.016	SE166371.017	SE166371.018	SE166371.019	SE166371.020
% Moisture	%w/w	0.5	13	14	13	13	11

			TP12/0.3-0.5	TP13/0.0-0.2	TP13/0.6-0.8	TP13/1.1-1.3	TP14/0.0-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			6/6/2017	6/6/2017	6/6/2017	6/6/2017	6/6/2017
PARAMETER	UOM	LOR	SE166371.021	SE166371.022	SE166371.023	SE166371.024	SE166371.025
% Moisture	%w/w	0.5	15	7.8	13	9.2	8.1

			TP14/0.3-0.5	TP15/0.0-0.2	TP15/0.68	TP15/1.3-1.5	TP15/2.0-2.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			6/6/2017	6/6/2017	6/6/2017	6/6/2017	6/6/2017
PARAMETER	UOM	LOR	SE166371.026	SE166371.027	SE166371.028	SE166371.029	SE166371.030
% Moisture	%w/w	0.5	8.9	10	11	8.2	12

			TP16/0.1-0.3	TP16/0.8-1.0	TP16/1.4-1.6	TP16/1.8-2.0	DUP01
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			6/6/2017	6/6/2017	6/6/2017	6/6/2017	6/6/2017
PARAMETER	UOM	LOR	SE166371.031	SE166371.032	SE166371.033	SE166371.034	SE166371.035
% Moisture	%w/w	0.5	6.0	12	13	13	7.3

SE166371 R0

Moisture Content [AN002] Tested: 10/6/2017 (continued)

			DUP01A	DUP02	DUP02A	DUP03	DUP03A
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			6/6/2017	6/6/2017	6/6/2017	6/6/2017	6/6/2017
PARAMETER	UOM	LOR	SE166371.036	SE166371.037	SE166371.038	SE166371.039	SE166371.040
% Moisture	%w/w	0.5	8.0	18	16	7.8	8.3

SE166371 R0

Fibre Identification in soil [AN602] Tested: 14/6/2017

			TP02/0.2-0.4	TP04/0.1-0.3	TP05/0.3-0.5	TP05/1.1-1.3	TP08/0.15-0.35
			SOIL	SOIL	SOIL	SOIL	SOIL
			6/6/2017	6/6/2017	6/6/2017	6/6/2017	6/6/2017
PARAMETER	UOM	LOR	SE166371.002	SE166371.006	SE166371.007	SE166371.008	SE166371.012
Asbestos Detected	No unit	-	No	No	No	No	No

			TP09/0.2-0.4	TP10/0.7-0.9	TP11/0.3-0.5	TP13/0.0-0.2	TP14/0.0-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			6/6/2017	6/6/2017	6/6/2017	6/6/2017	6/6/2017
PARAMETER	UOM	LOR	SE166371.013	SE166371.016	SE166371.018	SE166371.022	SE166371.025
Asbestos Detected	No unit	-	No	No	No	No	No

			TP15/0.0-0.2	TP15/1.3-1.5	TP16/0.1-0.3	TP16/0.8-1.0
			SOIL	SOIL	SOIL	SOIL
						-
			6/6/2017	6/6/2017	6/6/2017	6/6/2017
PARAMETER	UOM	LOR	SE166371.027	SE166371.029	SE166371.031	SE166371.032
Asbestos Detected	No unit	-	No	No	No	No

SE166371 R0

VOCs in Water [AN433] Tested: 10/6/2017

			TRIP SPIKE
			WATER
			- 6/6/2017
PARAMETER	UOM	LOR	SE166371.041
Benzene	μg/L	0.5	[71%]
Toluene	μg/L	0.5	[78%]
Ethylbenzene	µg/L	0.5	[74%]
m/p-xylene	μg/L	1	[74%]
o-xylene	µg/L	0.5	[76%]
Naphthalene	μg/L	0.5	-
Total Xylenes	µg/L	1.5	-
Total BTEX	μg/L	3	-

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic 'clues', which provide a reasonable degree of certainty, dispersion staining is a mandatory 'clue' for positive identification. If sufficient 'clues' are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf).
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES -

NATA accreditation does not cover the performance of this service. Indicative data, theoretical holding time exceeded.

Not analysed. NVL IS LNR

Not validated. Insufficient sample for analysis. Sample listed, but not received. UOM LOR ¢↓

Unit of Measure. Limit of Reporting. Raised/lowered Limit of Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sos.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

This report must not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DETAI	LS
Contact	Craig Cowper	Manager	Huong Crawford
Client	SLR CONSULTING AUSTRALIA PTY LTD	Laboratory	SGS Alexandria Environmental
Address	Lego Building, 2 Lincoln Street (PO Box 176 NSW LANECOVE 1595) LANECOVE NSW 2066	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 9427 8100	Telephone	+61 2 8594 0400
Facsimile	02 9427 8200	Facsimile	+61 2 8594 0499
Email	ccowper@slrconsulting.com	Email	au.environmental.sydney@sgs.com
Project	610.17191.00001 Pymble	SGS Reference	SE166371 R0
Order Number	22711	Date Received	07 Jun 2017
Samples	14	Date Reported	15 Jun 2017

- COMMENTS ·

Accredited for compliance with ISO/IEC 17025-Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES

Akheeqar Beniameen Chemist

Kamrul Ahsan Senior Chemist

Bennet Lo Senior Organic Chemist/Metals Chemis

kmln

Ly Kim Ha Organic Section Head

Dong Liang Metals/Inorganics Team Leader

S. Ravendr.

Ravee Sivasubramaniam Hygiene Team Leader

Australia

Australia

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 t +61 2 8594 0400 www.sgs.com.au f +61 2 8594 0499

Member of the SGS Group

ANALYTICAL REPORT

 RESULTS - Fibre Identifica 					Method AN602
					WELTON ANOUZ
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification
SE166371.002	TP02/0.2-0.4	Soil	104g clay,sand,rocks	06 Jun 2017	No Asbestos Found Organic Fibres Detected
SE166371.006	TP04/0.1-0.3	Soil	72g sand,soil,rocks	06 Jun 2017	No Asbestos Found
SE166371.007	TP05/0.3-0.5	Soil	79g sand,soil,rocks, bitumen	06 Jun 2017	No Asbestos Found
SE166371.008	TP05/1.1-1.3	Soil	67g clay,rocks	06 Jun 2017	No Asbestos Found
SE166371.012	TP08/0.15-0.35	Soil	68g sand,soil,rocks	06 Jun 2017	No Asbestos Found
SE166371.013	TP09/0.2-0.4	Soil	75g clay,sand,rocks	06 Jun 2017	No Asbestos Found
SE166371.016	TP10/0.7-0.9	Soil	75g clay,sand,soil,ro cks	06 Jun 2017	No Asbestos Found
SE166371.018	TP11/0.3-0.5	Soil	79g clay,sand,rocks	06 Jun 2017	No Asbestos Found
SE166371.022	TP13/0.0-0.2	Soil	61g sand,soil,rocks	06 Jun 2017	No Asbestos Found Organic Fibres Detected
SE166371.025	TP14/0.0-0.2	Soil	83g clay,sand,soil,ro cks	06 Jun 2017	No Asbestos Found Organic Fibres Detected
SE166371.027	TP15/0.0-0.2	Soil	104g clay,sand,soil,ro cks	06 Jun 2017	No Asbestos Found Organic Fibres Detected
SE166371.029	TP15/1.3-1.5	Soil	91g clay,sand,soil,ro cks	06 Jun 2017	No Asbestos Found
SE166371.031	TP16/0.1-0.3	Soil	77g clay,sand,soil,ro cks	06 Jun 2017	No Asbestos Found
SE166371.032	TP16/0.8-1.0	Soil	96g clay,sand,soil,ro cks	06 Jun 2017	No Asbestos Found

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf).
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples , Section 8.4, Trace Analysis Criteria, Note 4 states: "Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES

Amosite Chrvsotile	-	Brown Asbestos White Asbestos	NA LNR	-	Not Analysed Listed. Not Required
Crocidolite Amphiboles	-	Blue Asbestos Amosite and/or Crocidolite	*	-	NATA accreditation does not cover the performance of this service. Indicative data, theoretical holding time exceeded.

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Sampled by the client.

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

Contact	Craig Cowper	Manager	Huong Crawford
Client	SLR CONSULTING AUSTRALIA PTY LTD	Laboratory	SGS Alexandria Environmental
Address	Lego Building, 2 Lincoln Street (PO Box 176 NSW LANECOVE 1595) LANECOVE NSW 2066	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 9427 8100	Telephone	+61 2 8594 0400
Facsimile	02 9427 8200	Facsimile	+61 2 8594 0499
Email	ccowper@slrconsulting.com	Email	au.environmental.sydney@sgs.com
Project	610.17191.00001 Pymble	SGS Reference	SE166371 R0
Order Number	22711	Date Received	07 Jun 2017
Samples	41	Date Reported	15 Jun 2017

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Duplicate	Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES	3 items
	TRH (Total Recoverable Hydrocarbons) in Soil	2 items
Matrix Spike	Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES	2 items

Samples clearly labelled	Yes	Complete documentation received	Yes
Sample container provider	SGS	Sample cooling method	Ice Bricks
Samples received in correct containers	Yes	Sample counts by matrix	40 Soil, 1 Water
Date documentation received	7/6/2017	Type of documentation received	COC
Samples received in good order	Yes	Samples received without headspace	Yes
Sample temperature upon receipt	9.4°C	Sufficient sample for analysis	Yes
Turnaround time requested	Standard		

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St Alexandria NSW 2015 PO Box 6432 Bourke Rd BC Alexandria NSW 2015 t +61 2 8594 0400 f +61 2 8594 0499

Member of the SGS Group

www.sgs.com.au

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Fibre Identification in soil Method: ME-(AU)-[ENV]AN602 Analysed Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due TP02/0 2-0 4 SE166371.002 LB126050 06 Jun 2017 07 Jun 2017 06 Jun 2018 14 Jun 2017 06 Jun 2018 15 Jun 2017 06 Jun 2018 TP04/0.1-0.3 SE166371.006 LB126050 06 Jun 2017 07 Jun 2017 06 Jun 2018 14 Jun 2017 15 Jun 2017 TP05/0.3-0.5 SE166371.007 LB126050 06 Jun 2017 07 Jun 2017 06 Jun 2018 14 Jun 2017 06 Jun 2018 15 Jun 2017 TP05/1.1-1.3 SE166371.008 LB126050 06 Jun 2017 07 Jun 2017 06 Jun 2018 14 Jun 2017 06 Jun 2018 15 Jun 2017 TP08/0.15-0.35 SE166371.012 LB126050 06 Jun 2017 07 Jun 2017 06 Jun 2018 14 Jun 2017 06 Jun 2018 15 Jun 2017 14 Jun 2017 TP09/0.2-0.4 SE166371.013 LB126050 06 Jun 2017 07 Jun 2017 06 Jun 2018 06 Jun 2018 15 Jun 2017 TP10/0.7-0.9 06 Jun 2017 14 Jun 2017 SE166371.016 LB126050 07 Jun 2017 06 Jun 2018 06 Jun 2018 15 Jun 2017 TP11/0.3-0.5 SE166371.018 LB126050 06 Jun 2017 07 Jun 2017 06 Jun 2018 14 Jun 2017 06 Jun 2018 15 Jun 2017 TP13/0.0-0.2 SE166371.022 LB126050 06 Jun 2017 07 Jun 2017 06 Jun 2018 14 Jun 2017 06 Jun 2018 15 Jun 2017 TP14/0.0-0.2 SE166371.025 LB126050 06 Jun 2017 07 Jun 2017 06 Jun 2018 14 Jun 2017 06 Jun 2018 15 Jun 2017 TP15/0.0-0.2 SE166371.027 LB126050 06 Jun 2017 07 Jun 2017 06 Jun 2018 14 Jun 2017 06 Jun 2018 15 Jun 2017 TP15/1.3-1.5 SE166371.029 LB126050 06 Jun 2017 07 Jun 2017 06 Jun 2018 14 Jun 2017 06 Jun 2018 15 Jun 2017 TP16/0.1-0.3 SE166371.031 LB126050 06 Jun 2017 07 Jun 2017 06 Jun 2018 14 Jun 2017 06 Jun 2018 15 Jun 2017 TP16/0.8-1.0 SE166371.032 LB126050 06 Jun 2017 07 Jun 2017 06 Jun 2018 14 Jun 2017 06 Jun 2018 15 Jun 2017 ercury in Soil Method: ME-(AU)-[ENV]AN312 Sample Name Received Analysed QC Ref Sampled Extraction Due Extracted Analysis Due Sample No. TP01/0 0-0 2 SE166371.001 I B125996 06 Jun 2017 07 Jun 2017 04 Jul 2017 13 Jun 2017 04 Jul 2017 15 Jun 2017 TP02/0.9-0.8 SE166371.003 LB125996 06 Jun 2017 07 Jun 2017 04 Jul 2017 13 Jun 2017 04 Jul 2017 15 Jun 2017 TP02/0.8-1.0 SE166371.004 LB125996 06 Jun 2017 07 Jun 2017 04 Jul 2017 13 Jun 2017 04 Jul 2017 15 Jun 2017 TP03/0.0-0.1 LB125996 07 Jun 2017 04 Jul 2017 04 Jul 2017 SE166371.005 06 Jun 2017 13 Jun 2017 15 Jun 2017 TP04/0.1-0.3 SE166371.006 LB125996 06 Jun 2017 07 Jun 2017 04 Jul 2017 13 Jun 2017 04 Jul 2017 15 Jun 2017 TP05/0.3-0.5 SE166371.007 LB125996 06 Jun 2017 07 Jun 2017 04 Jul 2017 13 Jun 2017 04 Jul 2017 15 Jun 2017 TP06/0.0-0.2 SE166371.009 LB125996 06 Jun 2017 07 Jun 2017 04 Jul 2017 13 Jun 2017 04 Jul 2017 15 Jun 2017 TP06/0.2-0.4 LB125996 07 Jun 2017 04 Jul 2017 04 Jul 2017 SE166371.010 06 Jun 2017 13 Jun 2017 15 Jun 2017 TP07/0.0-0.1 SE166371.011 LB125996 06 Jun 2017 07 Jun 2017 04 Jul 2017 13 Jun 2017 04 Jul 2017 15 Jun 2017 06 Jun 2017 TP08/0.15-0.35 LB125996 07 Jun 2017 04 Jul 2017 04 Jul 2017 SE166371.012 13 Jun 2017 15 Jun 2017 TP09/0.2-0.4 SE166371.013 LB125996 06 Jun 2017 07 Jun 2017 04 Jul 2017 13 Jun 2017 04 Jul 2017 15 Jun 2017 TP10/0.7-0.9 SE166371.014 LB125996 06 Jun 2017 07 Jun 2017 04 Jul 2017 13 Jun 2017 04 Jul 2017 15 Jun 2017 TP10/0.1-0.3 LB125996 07 Jun 2017 SE166371.015 06 Jun 2017 04 Jul 2017 13 Jun 2017 04 Jul 2017 15 Jun 2017 TP10/1.3-1.5 SE166371.017 I B125996 06 Jun 2017 07 Jun 2017 04 Jul 2017 13 Jun 2017 04 Jul 2017 15 Jun 2017 TP11/0.3-0.5 SE166371.018 LB125997 06 Jun 2017 07 Jun 2017 04 Jul 2017 13 Jun 2017 04 Jul 2017 15 Jun 2017 TP12/0.0-0.2 SE166371.020 LB125997 06 Jun 2017 07 Jun 2017 04 Jul 2017 13 Jun 2017 04 Jul 2017 15 Jun 2017 TP12/0.3-0.5 SE166371.021 LB125997 06 Jun 2017 07 Jun 2017 04 Jul 2017 13 Jun 2017 04 Jul 2017 15 Jun 2017 04 Jul 2017 TP13/0.6-0.8 04 Jul 2017 SE166371.023 LB125951 06 Jun 2017 07 Jun 2017 13 Jun 2017 14 Jun 2017 TP13/1.1-1.3 SE166371.024 LB125951 06 Jun 2017 07 Jun 2017 04 Jul 2017 13 Jun 2017 04 Jul 2017 14 Jun 2017 TP14/0.3-0.5 SE166371.026 LB125951 06 Jun 2017 07 Jun 2017 04 Jul 2017 13 Jun 2017 04 Jul 2017 14 Jun 2017 TP15/0.0-0.2 SE166371.027 LB125951 06 Jun 2017 07 Jun 2017 04 Jul 2017 13 Jun 2017 04 Jul 2017 14 Jun 2017 04 Jul 2017 TP15/1.3-1.5 SE166371.029 LB125951 06 Jun 2017 07 Jun 2017 13 Jun 2017 04 Jul 2017 14 Jun 2017 TP16/0.8-1.0 06 Jun 2017 07 Jun 2017 04 Jul 2017 04 Jul 2017 SE166371.032 LB125951 13 Jun 2017 14 Jun 2017 TP16/1.4-1.6 SE166371.033 LB125951 06 Jun 2017 07 Jun 2017 04 Jul 2017 13 Jun 2017 04 Jul 2017 14 Jun 2017 DUP02 SE166371.037 LB125951 06 Jun 2017 07 Jun 2017 04 Jul 2017 13 Jun 2017 04 Jul 2017 14 Jun 2017 DUP02A SE166371.038 LB125951 06 Jun 2017 07 Jun 2017 04 Jul 2017 13 Jun 2017 04 Jul 2017 14 Jun 2017 DUP03 SE166371.039 LB125951 06 Jun 2017 07 Jun 2017 04 Jul 2017 13 Jun 2017 04 Jul 2017 14 Jun 2017 14 Jun 2017 DUP03A SE166371.040 LB125951 06 Jun 2017 07 Jun 2017 04 Jul 2017 13 Jun 2017 04 Jul 2017 Method: ME-(AU)-IENVIAN002 Moisture Content Sample Name Analysis Due Analysed Sample No. QC Ref Sampled Received Extraction Due TP01/0.0-0.2 SE166371.001 LB125920 06 Jun 2017 07 Jun 2017 20 Jun 2017 10 Jun 2017 15 Jun 2017 14 Jun 2017 TP02/0.2-0.4 SE166371.002 LB125920 06 Jun 2017 07 Jun 2017 20 Jun 2017 10 Jun 2017 15 Jun 2017 14 Jun 2017 SE166371.003 TP02/0.9-0.8 LB125920 06 Jun 2017 07 Jun 2017 20 Jun 2017 10 Jun 2017 15 Jun 2017 14 Jun 2017 TP02/0.8-1.0 SE166371.004 LB125920 06 Jun 2017 07 Jun 2017 20 Jun 2017 10 Jun 2017 15 Jun 2017 14 Jun 2017 TP03/0.0-0.1 SE166371.005 LB125920 06 Jun 2017 07 Jun 2017 20 Jun 2017 10 Jun 2017 15 Jun 2017 14 Jun 2017 TP04/0.1-0.3 SE166371.006 LB125920 06 Jun 2017 07 Jun 2017 20 Jun 2017 10 Jun 2017 15 Jun 2017 14 Jun 2017 TP05/0.3-0.5 LB125920 07 Jun 2017 20 Jun 2017 SE166371.007 06 Jun 2017 10 Jun 2017 15 Jun 2017 14 Jun 2017 TP05/1.1-1.3 SE166371.008 LB125920 06 Jun 2017 07 Jun 2017 20 Jun 2017 10 Jun 2017 15 Jun 2017 14 Jun 2017 TP06/0.0-0.2 SE166371.009 LB125920 06 Jun 2017 07 Jun 2017 20 Jun 2017 10 Jun 2017 15 Jun 2017 14 Jun 2017 TP06/0.2-0.4 SE166371.010 LB125920 06 Jun 2017 07 Jun 2017 20 Jun 2017 10 Jun 2017 15 Jun 2017 14 Jun 2017 TP07/0.0-0.1 SE166371.011 LB125920 06 Jun 2017 07 Jun 2017 20 Jun 2017 10 Jun 2017 15 Jun 2017 14 Jun 2017 TP08/0.15-0.35 SE166371.012 LB125920 06 Jun 2017 07 Jun 2017 20 Jun 2017 10 Jun 2017 15 Jun 2017 14 Jun 2017 TP09/0.2-0.4 SE166371.013 LB125920 06 Jun 2017 07 Jun 2017 20 Jun 2017 10 Jun 2017 15 Jun 2017 14 Jun 2017

Method: ME-(AU)-[ENV]AN002

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Moisture Content (continued)

Moisture Content (Continue	~~)						Modiodi	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP10/0.7-0.9	SE166371.014	LB125920	06 Jun 2017	07 Jun 2017	20 Jun 2017	10 Jun 2017	15 Jun 2017	14 Jun 2017
TP10/0.1-0.3	SE166371.015	LB125920	06 Jun 2017	07 Jun 2017	20 Jun 2017	10 Jun 2017	15 Jun 2017	14 Jun 2017
TP10/0.7-0.9	SE166371.016	LB125920	06 Jun 2017	07 Jun 2017	20 Jun 2017	10 Jun 2017	15 Jun 2017	14 Jun 2017
TP10/1.3-1.5	SE166371.017	LB125920	06 Jun 2017	07 Jun 2017	20 Jun 2017	10 Jun 2017	15 Jun 2017	14 Jun 2017
TP11/0.3-0.5	SE166371.018	LB125920	06 Jun 2017	07 Jun 2017	20 Jun 2017	10 Jun 2017	15 Jun 2017	14 Jun 2017
TP11/1.0-1.2	SE166371.019	LB125920	06 Jun 2017	07 Jun 2017	20 Jun 2017	10 Jun 2017	15 Jun 2017	14 Jun 2017
TP12/0.0-0.2	SE166371.020	LB125920	06 Jun 2017	07 Jun 2017	20 Jun 2017	10 Jun 2017	15 Jun 2017	14 Jun 2017
TP12/0.3-0.5	SE166371.021	LB125921	06 Jun 2017	07 Jun 2017	20 Jun 2017	10 Jun 2017	15 Jun 2017	14 Jun 2017
TP13/0.0-0.2	SE166371.022	LB125921	06 Jun 2017	07 Jun 2017	20 Jun 2017	10 Jun 2017	15 Jun 2017	14 Jun 2017
TP13/0.6-0.8	SE166371.023	LB125921	06 Jun 2017	07 Jun 2017	20 Jun 2017	10 Jun 2017	15 Jun 2017	14 Jun 2017
TP13/1.1-1.3	SE166371.024	LB125921	06 Jun 2017	07 Jun 2017	20 Jun 2017	10 Jun 2017	15 Jun 2017	14 Jun 2017
TP14/0.0-0.2	SE166371.025	LB125921	06 Jun 2017	07 Jun 2017	20 Jun 2017	10 Jun 2017	15 Jun 2017	14 Jun 2017
TP14/0.3-0.5	SE166371.026	LB125921	06 Jun 2017	07 Jun 2017	20 Jun 2017	10 Jun 2017	15 Jun 2017	14 Jun 2017
TP15/0.0-0.2	SE166371.027	LB125921	06 Jun 2017	07 Jun 2017	20 Jun 2017	10 Jun 2017	15 Jun 2017	14 Jun 2017
TP15/0.68	SE166371.028	LB125921	06 Jun 2017	07 Jun 2017	20 Jun 2017	10 Jun 2017	15 Jun 2017	14 Jun 2017
TP15/1.3-1.5	SE166371.029	LB125921	06 Jun 2017	07 Jun 2017	20 Jun 2017	10 Jun 2017	15 Jun 2017	14 Jun 2017
TP15/2.0-2.2 TP16/0.1-0.3	SE166371.030 SE166371.031	LB125921 LB125921	06 Jun 2017 06 Jun 2017	07 Jun 2017 07 Jun 2017	20 Jun 2017 20 Jun 2017	10 Jun 2017	15 Jun 2017	14 Jun 2017
						10 Jun 2017	15 Jun 2017	14 Jun 2017
TP16/0.8-1.0	SE166371.032	LB125921	06 Jun 2017	07 Jun 2017	20 Jun 2017	10 Jun 2017	15 Jun 2017	14 Jun 2017
TP16/1.4-1.6	SE166371.033	LB125921	06 Jun 2017	07 Jun 2017	20 Jun 2017	10 Jun 2017	15 Jun 2017	14 Jun 2017
TP16/1.8-2.0	SE166371.034	LB125921	06 Jun 2017	07 Jun 2017	20 Jun 2017	10 Jun 2017	15 Jun 2017	14 Jun 2017
DUP01	SE166371.035	LB125921	06 Jun 2017	07 Jun 2017	20 Jun 2017	10 Jun 2017	15 Jun 2017	14 Jun 2017
DUP01A	SE166371.036	LB125921	06 Jun 2017	07 Jun 2017	20 Jun 2017	10 Jun 2017	15 Jun 2017	14 Jun 2017
DUP02	SE166371.037	LB125921	06 Jun 2017	07 Jun 2017	20 Jun 2017	10 Jun 2017	15 Jun 2017	14 Jun 2017
DUP02A	SE166371.038	LB125921	06 Jun 2017	07 Jun 2017	20 Jun 2017	10 Jun 2017	15 Jun 2017	14 Jun 2017
DUP03	SE166371.039	LB125921	06 Jun 2017	07 Jun 2017	20 Jun 2017	10 Jun 2017	15 Jun 2017	14 Jun 2017
DUP03A	SE166371.040	LB125921	06 Jun 2017	07 Jun 2017	20 Jun 2017	10 Jun 2017	15 Jun 2017	14 Jun 2017
OC Pesticides in Soil							Method: I	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP01/0.0-0.2	SE166371.001	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP02/0.2-0.4	SE166371.002	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	14 Jun 2017
TP02/0.9-0.8	SE166371.003	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP03/0.0-0.1	SE166371.005	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP04/0.1-0.3	SE166371.006	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	14 Jun 2017
TP05/0.3-0.5	SE166371.007	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP05/1.1-1.3	SE166371.008	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP06/0.0-0.2	SE166371.009	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
	· · · · · · · · · · · · · · · · · · ·							
TP07/0.0-0.1	SE166371.011 SE166371.012	LB125781	06 Jun 2017 06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP08/0.15-0.35		LB125781		07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	14 Jun 2017
TP09/0.2-0.4	SE166371.013	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP10/0.1-0.3	SE166371.015	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	14 Jun 2017
TP10/0.7-0.9	SE166371.016	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP10/1.3-1.5	SE166371.017	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP11/0.3-0.5	SE166371.018	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP11/1.0-1.2	SE166371.019	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP12/0.0-0.2	SE166371.020	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP13/0.0-0.2	SE166371.022	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP13/0.6-0.8	SE166371.023	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP13/1.1-1.3	SE166371.024	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP14/0.0-0.2	SE166371.025	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP14/0.3-0.5	SE166371.026	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP15/0.0-0.2	SE166371.027	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP15/0.68	SE166371.028	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP15/1.3-1.5	SE166371.029	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP15/2.0-2.2	SE166371.030	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP16/0.1-0.3	SE166371.031	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP16/0.8-1.0	SE166371.032	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP16/1.4-1.6	SE166371.033	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP16/1.8-2.0	SE166371.034	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

	inued)						Weblied. I	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
DUP01	SE166371.035	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
DUP01A	SE166371.036	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
PAH (Polynuclear Aromatic	Hydrocarbons) in Soil						Method: I	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP01/0.0-0.2	SE166371.001	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP02/0.2-0.4	SE166371.002	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP02/0.9-0.8	SE166371.003	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP03/0.0-0.1	SE166371.005	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP04/0.1-0.3	SE166371.006	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP05/0.3-0.5	SE166371.007	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP05/1.1-1.3	SE166371.008	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP06/0.0-0.2	SE166371.009	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP07/0.0-0.1	SE166371.011	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP08/0.15-0.35	SE166371.012	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP09/0.2-0.4	SE166371.013	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP10/0.1-0.3	SE166371.015	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP10/0.7-0.9	SE166371.016	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP10/1.3-1.5	SE166371.017	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP11/0.3-0.5	SE166371.018	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP11/1.0-1.2	SE166371.019	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP12/0.0-0.2	SE166371.020	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP13/0.0-0.2	SE166371.022	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP13/0.6-0.8	SE166371.023	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP13/1.1-1.3	SE166371.024	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP14/0.0-0.2	SE166371.025	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP14/0.3-0.5	SE166371.026	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP15/0.0-0.2	SE166371.027	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP15/0.68	SE166371.028	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP15/1.3-1.5	SE166371.029	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP15/2.0-2.2	SE166371.030	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP16/0.1-0.3	SE166371.031	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP16/0.8-1.0	SE166371.032	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP16/1.4-1.6	SE166371.033	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP16/1.8-2.0	SE166371.034	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
DUP01	SE166371.035	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
DUP01A	SE166371.036	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
PCBs in Soil								ME-(AU)-[ENV]AN42
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP01/0.0-0.2	SE166371.001	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP02/0.2-0.4	SE166371.002	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP02/0.9-0.8	SE166371.003	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	14 Jun 2017
TP03/0.0-0.1	SE166371.005	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP04/0.1-0.3	SE166371.006	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP05/0.3-0.5	SE166371.007	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	14 Jun 2017
TP05/1.1-1.3	SE166371.008	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP06/0.0-0.2	SE166371.009	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP07/0.0-0.1	SE166371.011	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP08/0.15-0.35	SE166371.012	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP09/0.2-0.4	SE166371.013	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	14 Jun 2017
TP10/0.1-0.3	SE166371.015	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP10/0.7-0.9	SE166371.016	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP10/1.3-1.5	SE166371.017	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP11/0.3-0.5	SE166371.018	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP11/1.0-1.2	SE166371.019	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP12/0.0-0.2	SE166371.020	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP13/0.0-0.2	SE166371.022	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP13/0.6-0.8	SE166371.023	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP13/1.1-1.3	SE166371.024	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP14/0.0-0.2	SE166371.025	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or **Red** with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

PCBs in Soil (continued)							Method: I	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP14/0.3-0.5	SE166371.026	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP15/0.0-0.2	SE166371.027	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP15/0.68	SE166371.028	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP15/1.3-1.5	SE166371.029	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP15/2.0-2.2	SE166371.030	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP16/0.1-0.3	SE166371.031	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP16/0.8-1.0	SE166371.032	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP16/1.4-1.6	SE166371.033	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP16/1.8-2.0	SE166371.034	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
DUP01	SE166371.035	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
DUP01A	SE166371.036	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
Total Recoverable Metals in	Soil/Waste Solids/Materi	als by ICPOES					Method: ME-(AU)-[ENV]AN040/AN320
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP01/0.0-0.2	SE166371.001	LB125939	06 Jun 2017	07 Jun 2017	03 Dec 2017	13 Jun 2017	03 Dec 2017	15 Jun 2017
TP02/0.9-0.8	SE166371.003	LB125939	06 Jun 2017	07 Jun 2017	03 Dec 2017	13 Jun 2017	03 Dec 2017	15 Jun 2017
TP02/0.8-1.0	SE166371.004	LB125939	06 Jun 2017	07 Jun 2017	03 Dec 2017	13 Jun 2017	03 Dec 2017	15 Jun 2017
TP03/0.0-0.1	SE166371.005	LB125939	06 Jun 2017	07 Jun 2017	03 Dec 2017	13 Jun 2017	03 Dec 2017	15 Jun 2017
TP04/0.1-0.3	SE166371.006	LB125939	06 Jun 2017	07 Jun 2017	03 Dec 2017	13 Jun 2017	03 Dec 2017	15 Jun 2017
TP05/0.3-0.5	SE166371.007	LB125939	06 Jun 2017	07 Jun 2017	03 Dec 2017	13 Jun 2017	03 Dec 2017	15 Jun 2017
TP06/0.0-0.2	SE166371.009	LB125939	06 Jun 2017	07 Jun 2017	03 Dec 2017	13 Jun 2017	03 Dec 2017	15 Jun 2017
TP06/0.2-0.4	SE166371.010	LB125939	06 Jun 2017	07 Jun 2017	03 Dec 2017	13 Jun 2017	03 Dec 2017	15 Jun 2017
TP07/0.0-0.1	SE166371.011	LB125939	06 Jun 2017	07 Jun 2017	03 Dec 2017	13 Jun 2017	03 Dec 2017	15 Jun 2017
TP08/0.15-0.35	SE166371.012	LB125939	06 Jun 2017	07 Jun 2017	03 Dec 2017	13 Jun 2017	03 Dec 2017	15 Jun 2017
TP09/0.2-0.4	SE166371.013	LB125939	06 Jun 2017	07 Jun 2017	03 Dec 2017	13 Jun 2017	03 Dec 2017	15 Jun 2017
TP10/0.7-0.9	SE166371.014	LB125939	06 Jun 2017	07 Jun 2017	03 Dec 2017	13 Jun 2017	03 Dec 2017	15 Jun 2017
TP10/0.1-0.3	SE166371.015	LB125939	06 Jun 2017	07 Jun 2017	03 Dec 2017	13 Jun 2017	03 Dec 2017	15 Jun 2017
TP10/1.3-1.5	SE166371.017	LB125939	06 Jun 2017	07 Jun 2017	03 Dec 2017	13 Jun 2017	03 Dec 2017	15 Jun 2017
TP11/0.3-0.5	SE166371.018	LB125939	06 Jun 2017	07 Jun 2017	03 Dec 2017	13 Jun 2017	03 Dec 2017	15 Jun 2017
TP12/0.0-0.2	SE166371.020	LB125940	06 Jun 2017	07 Jun 2017	03 Dec 2017	13 Jun 2017	03 Dec 2017	15 Jun 2017
TP12/0.3-0.5	SE166371.021	LB125940	06 Jun 2017	07 Jun 2017	03 Dec 2017	13 Jun 2017	03 Dec 2017	15 Jun 2017
TP13/0.6-0.8	SE166371.023	LB125940	06 Jun 2017	07 Jun 2017	03 Dec 2017	13 Jun 2017	03 Dec 2017	15 Jun 2017
TP13/1.1-1.3	SE166371.024	LB125940	06 Jun 2017	07 Jun 2017	03 Dec 2017	13 Jun 2017	03 Dec 2017	15 Jun 2017
TP14/0.3-0.5	SE166371.026	LB125940	06 Jun 2017	07 Jun 2017	03 Dec 2017	13 Jun 2017	03 Dec 2017	15 Jun 2017
TP15/0.0-0.2	SE166371.027	LB125940	06 Jun 2017	07 Jun 2017	03 Dec 2017	13 Jun 2017	03 Dec 2017	15 Jun 2017
TP15/1.3-1.5	SE166371.029	LB125940	06 Jun 2017	07 Jun 2017	03 Dec 2017	13 Jun 2017	03 Dec 2017	15 Jun 2017
TP16/0.8-1.0	SE166371.032	LB125940	06 Jun 2017	07 Jun 2017	03 Dec 2017	13 Jun 2017	03 Dec 2017	15 Jun 2017
TP16/1.4-1.6	SE166371.033	LB125940	06 Jun 2017	07 Jun 2017	03 Dec 2017	13 Jun 2017	03 Dec 2017	15 Jun 2017
DUP02	SE166371.037	LB125940	06 Jun 2017	07 Jun 2017	03 Dec 2017	13 Jun 2017	03 Dec 2017	15 Jun 2017
DUP02A	SE166371.038	LB125940	06 Jun 2017	07 Jun 2017	03 Dec 2017	13 Jun 2017	03 Dec 2017	15 Jun 2017
DUP03	SE166371.039	LB125940	06 Jun 2017	07 Jun 2017	03 Dec 2017	13 Jun 2017	03 Dec 2017	15 Jun 2017
DUP03A	SE166371.040	LB125940	06 Jun 2017	07 Jun 2017	03 Dec 2017	13 Jun 2017	03 Dec 2017	15 Jun 2017
TRH (Total Recoverable Hy	drocarbons) in Soil						Method: I	ME-(AU)-[ENV]AN403
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP01/0.0-0.2	SE166371.001	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP02/0.2-0.4	SE166371.002	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP02/0.9-0.8	SE166371.003	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP03/0.0-0.1	SE166371.005	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP04/0.1-0.3	SE166371.006	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP05/0.3-0.5	SE166371.007	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP05/1.1-1.3	SE166371.008	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP06/0.0-0.2	SE166371.009	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP07/0.0-0.1	SE166371.011	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP08/0.15-0.35	SE166371.012	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP09/0.2-0.4	SE166371.013	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP10/0.1-0.3	SE166371.015	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP10/0.7-0.9	SE166371.016	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP10/1.3-1.5	SE166371.017	LB125781	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP11/0.3-0.5	SE166371.018	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP11/1.0-1.2	SE166371.019	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
								==

Method: ME_(ALI)_IEN///AN//03

Method: ME-(AU)-IENVIAN433

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

TRH (Total Recoverable Hydrocarbons) in Soil (continued)

KH (Total Recoverable Hydrocarbons) in Soil (continued)								ME-(AU)-[ENV]AN403
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP12/0.0-0.2	SE166371.020	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP13/0.0-0.2	SE166371.022	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP13/0.6-0.8	SE166371.023	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP13/1.1-1.3	SE166371.024	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP14/0.0-0.2	SE166371.025	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP14/0.3-0.5	SE166371.026	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP15/0.0-0.2	SE166371.027	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP15/0.68	SE166371.028	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP15/1.3-1.5	SE166371.029	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP15/2.0-2.2	SE166371.030	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP16/0.1-0.3	SE166371.031	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP16/0.8-1.0	SE166371.032	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP16/1.4-1.6	SE166371.033	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
TP16/1.8-2.0	SE166371.034	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
DUP01	SE166371.035	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017
DUP01A	SE166371.036	LB125782	06 Jun 2017	07 Jun 2017	20 Jun 2017	08 Jun 2017	18 Jul 2017	15 Jun 2017

VOC's in Soil

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
TP02/0.9-0.8	SE166371.003	LB125851	06 Jun 2017	07 Jun 2017	20 Jun 2017	09 Jun 2017	19 Jul 2017	15 Jun 2017	
TP04/0.1-0.3	SE166371.006	LB125851	06 Jun 2017	07 Jun 2017	20 Jun 2017	09 Jun 2017	19 Jul 2017	15 Jun 2017	
TP05/1.1-1.3	SE166371.008	LB125851	06 Jun 2017	07 Jun 2017	20 Jun 2017	09 Jun 2017	19 Jul 2017	15 Jun 2017	
TP08/0.15-0.35	SE166371.012	LB125851	06 Jun 2017	07 Jun 2017	20 Jun 2017	09 Jun 2017	19 Jul 2017	15 Jun 2017	
TP09/0.2-0.4	SE166371.013	LB125851	06 Jun 2017	07 Jun 2017	20 Jun 2017	09 Jun 2017	19 Jul 2017	15 Jun 2017	
TP10/1.3-1.5	SE166371.017	LB125851	06 Jun 2017	07 Jun 2017	20 Jun 2017	09 Jun 2017	19 Jul 2017	15 Jun 2017	
TP11/0.3-0.5	SE166371.018	LB125851	06 Jun 2017	07 Jun 2017	20 Jun 2017	09 Jun 2017	19 Jul 2017	15 Jun 2017	
TP12/0.0-0.2	SE166371.020	LB125851	06 Jun 2017	07 Jun 2017	20 Jun 2017	09 Jun 2017	19 Jul 2017	15 Jun 2017	
TP13/1.1-1.3	SE166371.024	LB125851	06 Jun 2017	07 Jun 2017	20 Jun 2017	09 Jun 2017	19 Jul 2017	15 Jun 2017	
TP14/0.3-0.5	SE166371.026	LB125851	06 Jun 2017	07 Jun 2017	20 Jun 2017	09 Jun 2017	19 Jul 2017	15 Jun 2017	
TP15/2.0-2.2	SE166371.030	LB125851	06 Jun 2017	07 Jun 2017	20 Jun 2017	09 Jun 2017	19 Jul 2017	15 Jun 2017	
TP16/1.8-2.0	SE166371.034	LB125851	06 Jun 2017	07 Jun 2017	20 Jun 2017	09 Jun 2017	19 Jul 2017	15 Jun 2017	

Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed TRIP SPIKE SE166371.041 LB125924 06 Jun 2017 07 Jun 2017 13 Jun 2017 10 Jun 2017 20 Jul 2017 14 Jun 2017

Volatile Petroleum Hydrocarbons in Soil

Method:	ME-(AU)-[ENV]	AN433
	time (c.c.) frances	

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP02/0.9-0.8	SE166371.003	LB125851	06 Jun 2017	07 Jun 2017	20 Jun 2017	09 Jun 2017	19 Jul 2017	15 Jun 2017
TP04/0.1-0.3	SE166371.006	LB125851	06 Jun 2017	07 Jun 2017	20 Jun 2017	09 Jun 2017	19 Jul 2017	15 Jun 2017
TP05/1.1-1.3	SE166371.008	LB125851	06 Jun 2017	07 Jun 2017	20 Jun 2017	09 Jun 2017	19 Jul 2017	15 Jun 2017
TP08/0.15-0.35	SE166371.012	LB125851	06 Jun 2017	07 Jun 2017	20 Jun 2017	09 Jun 2017	19 Jul 2017	15 Jun 2017
TP09/0.2-0.4	SE166371.013	LB125851	06 Jun 2017	07 Jun 2017	20 Jun 2017	09 Jun 2017	19 Jul 2017	15 Jun 2017
TP10/1.3-1.5	SE166371.017	LB125851	06 Jun 2017	07 Jun 2017	20 Jun 2017	09 Jun 2017	19 Jul 2017	15 Jun 2017
TP11/0.3-0.5	SE166371.018	LB125851	06 Jun 2017	07 Jun 2017	20 Jun 2017	09 Jun 2017	19 Jul 2017	15 Jun 2017
TP12/0.0-0.2	SE166371.020	LB125851	06 Jun 2017	07 Jun 2017	20 Jun 2017	09 Jun 2017	19 Jul 2017	15 Jun 2017
TP13/1.1-1.3	SE166371.024	LB125851	06 Jun 2017	07 Jun 2017	20 Jun 2017	09 Jun 2017	19 Jul 2017	15 Jun 2017
TP14/0.3-0.5	SE166371.026	LB125851	06 Jun 2017	07 Jun 2017	20 Jun 2017	09 Jun 2017	19 Jul 2017	15 Jun 2017
TP15/2.0-2.2	SE166371.030	LB125851	06 Jun 2017	07 Jun 2017	20 Jun 2017	09 Jun 2017	19 Jul 2017	15 Jun 2017
TP16/1.8-2.0	SE166371.034	LB125851	06 Jun 2017	07 Jun 2017	20 Jun 2017	09 Jun 2017	19 Jul 2017	15 Jun 2017

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

DC Pesticides in Soil				Method: M	E-(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	TP02/0.2-0.4	SE166371.002	%	60 - 130%	97
	TP04/0.1-0.3	SE166371.006	%	60 - 130%	93
	TP08/0.15-0.35	SE166371.012	%	60 - 130%	96
	TP10/0.1-0.3	SE166371.015	%	60 - 130%	95
	TP14/0.3-0.5	SE166371.026	%	60 - 130%	101
	TP15/1.3-1.5	SE166371.029	%	60 - 130%	98
NUL (Dab music an Annualita Ubuda analitana) in Onii			,0		
PAH (Polynuclear Aromatic Hydrocarbons) in Soil					e-(au)-[env]an4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	TP01/0.0-0.2	SE166371.001	%	70 - 130%	94
	TP02/0.2-0.4	SE166371.002	%	70 - 130%	90
	TP03/0.0-0.1	SE166371.005	%	70 - 130%	86
	TP04/0.1-0.3	SE166371.006	%	70 - 130%	88
	TP05/0.3-0.5	SE166371.007	%	70 - 130%	90
	TP06/0.0-0.2	SE166371.009	%	70 - 130%	88
	TP07/0.0-0.1	SE166371.011	%	70 - 130%	90
	TP08/0.15-0.35	SE166371.012	%	70 - 130%	94
	TP09/0.2-0.4	SE166371.013	%	70 - 130%	92
	TP10/0.7-0.9	SE166371.016	%	70 - 130%	94
	TP11/1.0-1.2	SE166371.019	%	70 - 130%	84
	TP11/1.0-1.2 TP12/0.0-0.2	SE166371.019 SE166371.020	%	70 - 130%	84
	TP13/0.0-0.2	SE166371.022	%	70 - 130%	94
	TP14/0.0-0.2	SE166371.025	%	70 - 130%	84
	TP15/0.68	SE166371.028	%	70 - 130%	88
	TP16/0.1-0.3	SE166371.031	%	70 - 130%	86
	TP16/0.8-1.0	SE166371.032	%	70 - 130%	88
	DUP01	SE166371.035	%	70 - 130%	90
	DUP01A	SE166371.036	%	70 - 130%	90
d14-p-terphenyl (Surrogate)	TP01/0.0-0.2	SE166371.001	%	70 - 130%	92
	TP02/0.2-0.4	SE166371.002	%	70 - 130%	86
	TP03/0.0-0.1	SE166371.005	%	70 - 130%	98
	TP04/0.1-0.3	SE166371.006	%	70 - 130%	108
	TP05/0.3-0.5	SE166371.007	%	70 - 130%	90
	TP06/0.0-0.2	SE166371.009	%	70 - 130%	92
	TP07/0.0-0.1	SE166371.011	%	70 - 130%	88
	TP08/0.15-0.35	SE166371.012	%	70 - 130%	98
	TP09/0.2-0.4	SE166371.013	%	70 - 130%	96
	TP10/0.7-0.9	SE166371.016	%	70 - 130%	96
			%		
	TP11/1.0-1.2	SE166371.019		70 - 130%	88
	TP12/0.0-0.2	SE166371.020	%	70 - 130%	84
	TP13/0.0-0.2	SE166371.022	%	70 - 130%	94
	TP14/0.0-0.2	SE166371.025	%	70 - 130%	86
	TP15/0.68	SE166371.028	%	70 - 130%	86
	TP16/0.1-0.3	SE166371.031	%	70 - 130%	90
	TP16/0.8-1.0	SE166371.032	%	70 - 130%	90
	DUP01	SE166371.035	%	70 - 130%	98
	DUP01A	SE166371.036	%	70 - 130%	82
d5-nitrobenzene (Surrogate)	TP01/0.0-0.2	SE166371.001	%	70 - 130%	88
	TP02/0.2-0.4	SE166371.002	%	70 - 130%	84
	TP03/0.0-0.1	SE166371.005	%	70 - 130%	86
	TP04/0.1-0.3	SE166371.006	%	70 - 130%	90
	TP05/0.3-0.5	SE166371.007	%	70 - 130%	88
	TP06/0.0-0.2	SE166371.009	%	70 - 130%	90
	TP07/0.0-0.1	SE166371.011	%	70 - 130%	92
	TP08/0.15-0.35	SE166371.012	%	70 - 130%	92
	TP09/0.15-0.35	SE166371.012	%	70 - 130%	92
	TP10/0.7-0.9	SE166371.016	%	70 - 130%	92
	TP11/1.0-1.2	SE166371.019	%	70 - 130%	86
	TP12/0.0-0.2	SE166371.020	%	70 - 130%	84
	TP13/0.0-0.2	SE166371.022	%	70 - 130%	92
	TP14/0.0-0.2	SE166371.025	%	70 - 130%	90

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

AH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)				Method. ME	(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d5-nitrobenzene (Surrogate)	TP15/0.68	SE166371.028	%	70 - 130%	92
	TP16/0.1-0.3	SE166371.031	%	70 - 130%	90
	TP16/0.8-1.0	SE166371.032	%	70 - 130%	88
	DUP01	SE166371.035	%	70 - 130%	96
	DUP01A	SE166371.036	%	70 - 130%	100
CBs in Soil				Method: ME-	(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
	Sample Name TP02/0.9-0.8	Sample Number			
Tetrachloro-m-xylene (TCMX) (Surrogate)		SE166371.003	%	60 - 130%	97
	TP05/0.3-0.5	SE166371.007	%	60 - 130%	93
	TP09/0.2-0.4	SE166371.013	%	60 - 130%	104
	TP13/0.6-0.8	SE166371.023	%	60 - 130%	107
	TP15/0.0-0.2	SE166371.027	%	60 - 130%	99
	TP16/1.4-1.6	SE166371.033	%	60 - 130%	100
OC's in Soil				Method: ME-	(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	TP02/0.9-0.8	SE166371.003	%	60 - 130%	71
	TP04/0.1-0.3	SE166371.006	%	60 - 130%	73
	TP05/1.1-1.3	SE166371.008	%	60 - 130%	77
	TP08/0.15-0.35	SE166371.012	%	60 - 130%	71
	TP09/0.2-0.4	SE166371.013	%	60 - 130%	75
	TP10/1.3-1.5	SE166371.017	%	60 - 130%	74
	TP11/0.3-0.5	SE166371.018	%	60 - 130%	71
	TP12/0.0-0.2	SE166371.020	%	60 - 130%	70
	TP13/1.1-1.3	SE166371.024	%	60 - 130%	73
	TP14/0.3-0.5	SE166371.026	%	60 - 130%	71
	TP15/2.0-2.2	SE166371.030	%	60 - 130%	75
	TP16/1.8-2.0	SE166371.034	%	60 - 130%	73
d4.1.2 dichleroothono (Surrogoto)	TP02/0.9-0.8	SE166371.003	%	60 - 130%	83
d4-1,2-dichloroethane (Surrogate)			%	60 - 130%	89
	TP04/0.1-0.3	SE166371.006			
	TP05/1.1-1.3	SE166371.008	%	60 - 130%	81
	TP08/0.15-0.35	SE166371.012	%	60 - 130%	83
	TP09/0.2-0.4	SE166371.013	%	60 - 130%	85
	TP10/1.3-1.5	SE166371.017	%	60 - 130%	86
	TP11/0.3-0.5	SE166371.018	%	60 - 130%	82
	TP12/0.0-0.2	SE166371.020	%	60 - 130%	92
	TP13/1.1-1.3	SE166371.024	%	60 - 130%	91
	TP14/0.3-0.5	SE166371.026	%	60 - 130%	89
	TP15/2.0-2.2	SE166371.030	%	60 - 130%	96
	TP16/1.8-2.0	SE166371.034	%	60 - 130%	89
d8-toluene (Surrogate)	TP02/0.9-0.8	SE166371.003	%	60 - 130%	75
	TP04/0.1-0.3	SE166371.006	%	60 - 130%	80
	TP05/1.1-1.3	SE166371.008	%	60 - 130%	78
	TP08/0.15-0.35	SE166371.012	%	60 - 130%	74
	TP09/0.2-0.4	SE166371.013	%	60 - 130%	74
	TP10/1.3-1.5	SE166371.017	%	60 - 130%	75
	TP11/0.3-0.5	SE166371.018	%	60 - 130%	71
	TP12/0.0-0.2	SE166371.020	%	60 - 130%	77
	TP13/1.1-1.3	SE166371.024	%	60 - 130%	76
	TP14/0.3-0.5	SE166371.026	%	60 - 130%	79
	TP15/2.0-2.2	SE166371.030	%	60 - 130%	90
	TP16/1.8-2.0	SE166371.034	%	60 - 130%	77
Dibromofluoromethane (Surrogate)	TP02/0.9-0.8	SE166371.003	%	60 - 130%	76
	TP04/0.1-0.3	SE166371.006	%	60 - 130%	79
	TP05/1.1-1.3	SE166371.008	%	60 - 130%	70
	TP08/0.15-0.35	SE166371.012	%	60 - 130%	74
	TP09/0.2-0.4	SE166371.013	%	60 - 130%	76
	TP10/1.3-1.5	SE166371.017	%	60 - 130%	79
	TP11/0.3-0.5	SE166371.018	%	60 - 130%	74
	TP12/0.0-0.2	SE166371.020	%	60 - 130%	82

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

/OC's in Soil (continued)					E-(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Dibromofluoromethane (Surrogate)	TP14/0.3-0.5	SE166371.026	%	60 - 130%	81
	TP15/2.0-2.2	SE166371.030	%	60 - 130%	84
	TP16/1.8-2.0	SE166371.034	%	60 - 130%	77
/OCs in Water				Method: ME	-(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
	TRIP SPIKE		%	40 - 130%	
Bromofluorobenzene (Surrogate)	TRIP SPIKE	SE166371.041	%		92
d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)		SE166371.041	%	40 - 130%	100 98
Dibromofluoromethane (Surrogate)	TRIP SPIKE TRIP SPIKE	SE166371.041 SE166371.041	%	40 - 130% 40 - 130%	110
	TRIF SPIRE	3E100371.041	/0		
/olatile Petroleum Hydrocarbons in Soil				Method: ME	E-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	TP02/0.9-0.8	SE166371.003	%	60 - 130%	71
	TP04/0.1-0.3	SE166371.006	%	60 - 130%	73
	TP05/1.1-1.3	SE166371.008	%	60 - 130%	77
	TP08/0.15-0.35	SE166371.012	%	60 - 130%	71
	TP09/0.2-0.4	SE166371.013	%	60 - 130%	75
	TP10/1.3-1.5	SE166371.017	%	60 - 130%	74
	TP11/0.3-0.5	SE166371.018	%	60 - 130%	71
	TP12/0.0-0.2	SE166371.020	%	60 - 130%	70
	TP13/1.1-1.3	SE166371.024	%	60 - 130%	73
	TP14/0.3-0.5	SE166371.026	%	60 - 130%	71
	TP15/2.0-2.2	SE166371.030	%	60 - 130%	75
	TP16/1.8-2.0	SE166371.034	%	60 - 130%	72
d4-1,2-dichloroethane (Surrogate)	TP02/0.9-0.8	SE166371.003	%	60 - 130%	83
	TP04/0.1-0.3	SE166371.006	%	60 - 130%	89
	TP05/1.1-1.3	SE166371.008	%	60 - 130%	81
	TP08/0.15-0.35	SE166371.012	%	60 - 130%	83
	TP09/0.2-0.4	SE166371.013	%	60 - 130%	85
	TP10/1.3-1.5	SE166371.017	%	60 - 130%	86
	TP11/0.3-0.5	SE166371.018	%	60 - 130%	82
	TP12/0.0-0.2	SE166371.020	%	60 - 130%	92
	TP13/1.1-1.3	SE166371.024	%	60 - 130%	91
	TP14/0.3-0.5	SE166371.026	%	60 - 130%	89
	TP15/2.0-2.2	SE166371.030	%	60 - 130%	96
	TP16/1.8-2.0	SE166371.034	%	60 - 130%	89
d8-toluene (Surrogate)	TP02/0.9-0.8	SE166371.003	%	60 - 130%	75
	TP04/0.1-0.3	SE166371.006	%	60 - 130%	80
	TP05/1.1-1.3	SE166371.008	%	60 - 130%	78
	TP08/0.15-0.35	SE166371.012	%	60 - 130%	74
	TP09/0.2-0.4	SE166371.013	%	60 - 130%	74
	TP10/1.3-1.5	SE166371.017	%	60 - 130%	75
	TP11/0.3-0.5	SE166371.018	%	60 - 130%	71
	TP12/0.0-0.2	SE166371.020	%	60 - 130%	77
	TP13/1.1-1.3	SE166371.024	%	60 - 130%	76
	TP14/0.3-0.5	SE166371.026	%	60 - 130%	79
	TP15/2.0-2.2	SE166371.030	%	60 - 130%	90
	TP16/1.8-2.0	SE166371.034	%	60 - 130%	77
Dibromofluoromethane (Surrogate)	TP02/0.9-0.8	SE166371.003	%	60 - 130%	76
	TP04/0.1-0.3	SE166371.006	%	60 - 130%	79
	TP05/1.1-1.3	SE166371.008	%	60 - 130%	70
	TP08/0.15-0.35	SE166371.012	%	60 - 130%	74
	TP09/0.2-0.4	SE166371.013	%	60 - 130%	76
	TP10/1.3-1.5	SE166371.017	%	60 - 130%	79
	TP11/0.3-0.5	SE166371.018	%	60 - 130%	74
	TP12/0.0-0.2	SE166371.020	%	60 - 130%	82
	TP13/1.1-1.3	SE166371.024	%	60 - 130%	80
	TP14/0.3-0.5	SE166371.026	%	60 - 130%	81
	TP15/2.0-2.2	SE166371.030	%	60 - 130%	84
	TP16/1.8-2.0	SE166371.034	%	60 - 130%	77

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil				Metho	od: ME-(AU)-[ENV]AN3
Sample Number		Parameter	Units	LOR	Result
LB125951.001		Mercury	mg/kg	0.05	<0.05
LB125996.001		Mercury	mg/kg	0.05	<0.05
LB125997.001		Mercury	mg/kg	0.05	<0.05
OC Pesticides in Soil				Meth	od: ME-(AU)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result
LB125781.001		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
ED123701.001		Alpha BHC		0.1	<0.1
		Lindane	mg/kg mg/kg	0.1	<0.1
		Heptachlor	mg/kg	0.1	<0.1
		Aldrin	mg/kg	0.1	<0.1
		Beta BHC	mg/kg	0.1	<0.1
		Delta BHC	mg/kg	0.1	<0.1
		Heptachlor epoxide	mg/kg	0.1	<0.1
		Alpha Endosulfan	mg/kg	0.2	<0.2
		Gamma Chlordane	mg/kg	0.1	<0.2
		Alpha Chlordane		0.1	<0.1
			mg/kg	0.1	<0.1
		_p,p'-DDE Dieldrin	mg/kg		<0.2
			mg/kg	0.2	<0.2
		Endrin Data Factoralita	mg/kg	0.2	
		Beta Endosulfan	mg/kg	0.2	<0.2
		p,p'-DDD	mg/kg	0.1	<0.1
		p,p'-DDT	mg/kg	0.1	<0.1
		Endosulfan sulphate	mg/kg	0.1	<0.1
		Endrin Aldehyde	mg/kg	0.1	<0.1
		Methoxychlor	mg/kg	0.1	<0.1
		Endrin Ketone	mg/kg	0.1	<0.1
		Isodrin	mg/kg	0.1	<0.1
			mg/kg	0.1	<0.1
1 0 10 5 7 00 00 1	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	84
LB125782.001		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
		Alpha BHC	mg/kg	0.1	<0.1
		Lindane	mg/kg	0.1	<0.1
		Heptachlor	mg/kg	0.1	<0.1
		Aldrin	mg/kg	0.1	<0.1
		Beta BHC	mg/kg	0.1	<0.1
		Delta BHC	mg/kg	0.1	<0.1
		Heptachlor epoxide	mg/kg	0.1	<0.1
		Alpha Endosulfan	mg/kg	0.2	<0.2
		Gamma Chlordane	mg/kg	0.1	<0.1
		Alpha Chlordane	mg/kg	0.1	<0.1
		p,p'-DDE	mg/kg	0.1	<0.1
		Dieldrin	mg/kg	0.2	<0.2
		Endrin Rota Endocultan	mg/kg	0.2	<0.2
		Beta Endosulfan	mg/kg	0.2	<0.2
		_p,p'-DDD 	mg/kg	0.1	<0.1
		p,p-الط Endosulfan sulphate	mg/kg	0.1	<0.1
		Endosuiran sulphate Endrin Aldehyde	mg/kg	0.1	<0.1
		Methoxychlor	mg/kg mg/kg	0.1	<0.1
		Endrin Ketone	mg/kg	0.1	<0.1
		Isodrin	mg/kg	0.1	<0.1
		Mirex		0.1	<0.1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg%	-	75
DALL (Delevent of a 1			/0		
PAH (Polynuclear Aromatic	c Hydrocarbons) in Soil				od: ME-(AU)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result
LB125781.001		Naphthalene	mg/kg	0.1	<0.1
		2-methylnaphthalene	mg/kg	0.1	<0.1
		1-methylnaphthalene	mg/kg	0.1	<0.1
		Acenaphthylene	mg/kg	0.1	<0.1
		Acenaphthene	mg/kg	0.1	<0.1

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Sample Number		Parameter	Units	LOR	od: ME-(AU)-[ENV] Result
B125781.001		Fluorene	mg/kg	0.1	<0.1
		Phenanthrene	mg/kg	0.1	<0.1
		Anthracene	mg/kg	0.1	<0.1
		Fluoranthene	mg/kg	0.1	<0.1
		Pyrene	mg/kg	0.1	<0.1
		Benzo(a)anthracene	mg/kg	0.1	<0.1
		Chrysene	mg/kg	0.1	<0.1
		Benzo(a)pyrene	mg/kg	0.1	<0.1
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		Total PAH (18)	mg/kg	0.8	<0.8
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	98
		2-fluorobiphenyl (Surrogate)	%	-	106
		d14-p-terphenyl (Surrogate)	%	-	98
B125782.001		Naphthalene	mg/kg	0.1	<0.1
		2-methylnaphthalene	mg/kg	0.1	<0.1
		1-methylnaphthalene	mg/kg	0.1	<0.1
		Acenaphthylene	mg/kg	0.1	<0.1
		Acenaphthene	mg/kg	0.1	<0.1
		Fluorene	mg/kg	0.1	<0.1
		Phenanthrene	mg/kg	0.1	<0.1
		Anthracene	mg/kg	0.1	<0.1
		Fluoranthene	mg/kg	0.1	<0.1
		Pyrene	mg/kg	0.1	<0.1
		Benzo(a)anthracene	mg/kg	0.1	<0.1
				0.1	<0.1
		Chrysene	mg/kg	0.1	<0.1
		Benzo(a)pyrene	mg/kg		
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		Total PAH (18)	mg/kg	0.8	<0.8
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	94
		2-fluorobiphenyl (Surrogate)	%	-	88
		d14-p-terphenyl (Surrogate)	%	-	86
CBs in Soll				Metho	od: ME-(AU)-[ENV]
ample Number		Parameter	Units	LOR	Result
B125781.001		Arochlor 1016	mg/kg	0.2	<0.2
		Arochior 1221	mg/kg	0.2	<0.2
		Arochior 1221 Arochior 1232	mg/kg	0.2	<0.2
		Arochlor 1242	mg/kg	0.2	<0.2
		Arochior 1242 Arochior 1248		0.2	<0.2
		Arochior 1246 Arochior 1254	mg/kg	0.2	<0.2
			mg/kg		
		Arochlor 1260	mg/kg	0.2	<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
		Arochlor 1268	mg/kg	0.2	<0.2
		Total PCBs (Arochlors)	mg/kg	1	<1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	84
3125782.001		Arochlor 1016	mg/kg	0.2	<0.2
		Arochlor 1221	mg/kg	0.2	<0.2
		Arochlor 1232	mg/kg	0.2	<0.2
		Arochlor 1242	mg/kg	0.2	<0.2
		Arochlor 1248	mg/kg	0.2	<0.2
		Arochlor 1254	mg/kg	0.2	<0.2
		Alochioi 1254			
		Arochlor 1260	mg/kg	0.2	<0.2
			mg/kg mg/kg	0.2 0.2	<0.2 <0.2
		Arochlor 1260			
		Arochlor 1260 Arochlor 1262	mg/kg	0.2	<0.2

Surrogates

Tetrachloro-m-xylene (TCMX) (Surrogate)

75

%

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Sample Number		als by ICPOES		1.00	(AU)-[ENV]AN040/AN
Sample Number		Parameter	Units	LOR	Result
_B125939.001		Arsenic, As	mg/kg	3	<3
		Cadmium, Cd	mg/kg	0.3	<0.3
		Chromium, Cr	mg/kg	0.3	<0.3
		Copper, Cu	mg/kg	0.5	<0.5
		Lead, Pb	mg/kg	1	<1
		Nickel, Ni	mg/kg	0.5	<0.5
		Zinc, Zn	mg/kg	0.5	<0.5
B125940.001		Arsenic, As	mg/kg	3	<3
		Cadmium, Cd	mg/kg	0.3	<0.3
		Chromium, Cr	mg/kg	0.3	<0.3
		Copper, Cu	mg/kg	0.5	<0.5
		Lead, Pb	mg/kg	1	<1
		Nickel, Ni	mg/kg	0.5	<0.5
		Zinc, Zn	mg/kg	0.5	<0.5
			nigrkg		
RH (Total Recoverab	le Hydrocarbons) in Soil			Metho	od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
B125781.001		TRH C10-C14	mg/kg	20	<20
		TRH C15-C28	mg/kg	45	<45
		TRH C29-C36	mg/kg	45	<45
		TRH C37-C40	mg/kg	100	<100
		TRH C10-C36 Total	mg/kg	110	<110
B125782.001		TRH C10-C14	mg/kg	20	<20
120102.001		TRH C15-C28	mg/kg	45	<45
		TRH C29-C36		45	<45
			mg/kg		<100
		TRH C37-C40	mg/kg	100	
		TRH C10-C36 Total	mg/kg	110	<110
/OC's in Soil				Metho	od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
_B125851.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
	-	Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Surrogates	Dibromofluoromethane (Surrogate)		-	72
		Dibromonuorometriane (Surrogate)	/6	-	
	Canogatoo	d 4 4 0 d'ablance dhana (Oranna a ta)	0/		
	Canogatoo	d4-1,2-dichloroethane (Surrogate)	%	-	81
	Canogado	d8-toluene (Surrogate)	%	-	81 95
		d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	%	-	81 95 76
	Totals	d8-toluene (Surrogate)	%	- - - 0.6	81 95
/OCs in Water		d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	%	0.6	81 95 76
		d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX	% % mg/kg	- 0.6	81 95 76 <0.6 ME-(AU)-[ENV]AN
Sample Number	Totals	d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX Parameter	% % mg/kg Units	- 0.6 LOR	81 95 76 <0.6 pd: ME-(AU)-[ENV]AN Result
Sample Number	Totals Monocyclic Aromatic	d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX Parameter Benzene	% % mg/kg Units μg/L	- 0.6 Metho LOR 0.5	81 95 76 <0.6 Dd: ME-(AU)-[ENV]AN Result <0.5
Sample Number	Totals	d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX Parameter Benzene Toluene	% % mg/kg Units µg/L µg/L	0.6 Metho LOR 0.5 0.5	81 95 76 0.6 bd: ME-(AU)-[ENV]AN Result <0.5 <0.5
Sample Number	Totals Monocyclic Aromatic	d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX Parameter Benzene Toluene Ethylbenzene	% % mg/kg Units μg/L μg/L μg/L	- 0.6 Metho 0.5 0.5 0.5 0.5	81 95 76 <0.6 od: ME-(AU)-[ENV]AN Rosult <0.5 <0.5 <0.5
Sample Number	Totals Monocyclic Aromatic	d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX Parameter Benzene Toluene Ethylbenzene m/p-xylene	% % mg/kg Units μg/L μg/L μg/L μg/L	- 0.6 Metho 0.5 0.5 0.5 0.5 1	81 95 76 <0.6 Dd: ME-(AU)-[ENV]AN Result <0.5 <0.5 <0.5 <0.5 <1
Sample Number	Totals Monocyclic Aromatic Hydrocarbons	d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene	% % mg/kg Units μg/L μg/L μg/L μg/L μg/L	- 0.6 Metho 0.5 0.5 0.5 0.5 1 0.5	81 95 76 <0.6 xBE-(AU)-[ENV]AN Result <0.5 <0.5 <0.5 <0.5 <1 <0.5
Sample Number	Totals Monocyclic Aromatic	d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate)	% % mg/kg Units μg/L μg/L μg/L μg/L μg/L %	- 0.6 Metho 0.5 0.5 0.5 1 0.5 1 0.5	81 95 76 <0.6 od: ME-(AU)-[ENV]AN Result <0.5 <0.5 <0.5 <1 <0.5 <1 <0.5 106
Sample Number	Totals Monocyclic Aromatic Hydrocarbons	d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	% % mg/kg Units μg/L μg/L μg/L μg/L μg/L %	- 0.6 Metho 0.5 0.5 0.5 1 0.5 1 0.5 -	81 95 76 <0.6 ME-(AU)-[ENV]AN Result <0.5 <0.5 <0.5 <0.5 <1 <0.5 <1 <0.5 <1 0.5 96
Sample Number	Totals Monocyclic Aromatic Hydrocarbons	d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	% % mg/kg Units μg/L μg/L μg/L μg/L μg/L % %	- 0.6 Metho 0.5 0.5 0.5 1 0.5 1 0.5	81 95 76 <0.6 ME-(AU)-[ENV]AN Result <0.5 <0.5 <0.5 <0.5 <1 <0.5 <1 <0.5 106 96 110
Sample Number .B125924.001	Totals Monocyclic Aromatic Hydrocarbons Surrogates	d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	% % mg/kg Units μg/L μg/L μg/L μg/L μg/L %	- 0.6 Metho 0.5 0.5 0.5 1 0.5 1 0.5 -	81 95 76 <0.6 ME-(AU)-[ENV]AN Result <0.5 <0.5 <0.5 <0.5 <1 <0.5 <1 <0.5 <1 0.5 96
Sample Number	Totals Monocyclic Aromatic Hydrocarbons Surrogates	d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	% % mg/kg Units μg/L μg/L μg/L μg/L μg/L % %	- 0.6 Metho 0.5 0.5 0.5 1 0.5 - - - -	81 95 76 <0.6 ME-(AU)-[ENV]AN Result <0.5 <0.5 <0.5 <1 <0.5 <1 <0.5 106 96 110 118
Sample Number B125924.001	Totals Monocyclic Aromatic Hydrocarbons Surrogates	d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	% % mg/kg Units μg/L μg/L μg/L μg/L % % % %	0.6 Metho 0.5 0.5 0.5 1 0.5 Metho Metho	81 95 76 <0.6 xBE-(AU)-[ENV]AN Result <0.5 <0.5 <0.5 <1 <0.5 <1 <0.5 106 96 110 118 xBE-(AU)-[ENV]AN
Sample Number B125924.001 Olatile Petroleum Hyr Sample Number	Totals Monocyclic Aromatic Hydrocarbons Surrogates	d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) Benzene	% % mg/kg Units µg/L µg/L µg/L µg/L % % % % % Units	0.6 Metho 0.5 0.5 0.5 1 0.5 Metho LOR	81 95 76 <0.6 0.5 CME-(AU)-[ENV]AN Result <0.5 <0.5 <1 <0.5 <1 <0.5 106 96 110 118 ME-(AU)-[ENV]AN Result
Sample Number B125924.001 Volatile Petroleum Hyro Sample Number	Totals Monocyclic Aromatic Hydrocarbons Surrogates drocarbons in Soil	d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate)	% % mg/kg Units μg/L μg/L μg/L μg/L % % % % % % Units mg/kg	0.6 Metho 0.5 0.5 0.5 1 0.5 Metho LOR 20	81 95 76 <0.6 0d: ME-(AU)-[ENV]AN Result <0.5 <0.5 <0.5 <1 <0.5 <1 <0.5 106 96 110 118 0d: ME-(AU)-[ENV]AN Result <20
Sample Number .B125924.001	Totals Monocyclic Aromatic Hydrocarbons Surrogates	d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) Benzene	% % mg/kg Units µg/L µg/L µg/L µg/L % % % % % Units	0.6 Metho 0.5 0.5 0.5 1 0.5 Metho LOR	81 95 76 <0.6 0.5 CME-(AU)-[ENV]AN Result <0.5 <0.5 <1 <0.5 <1 <0.5 106 96 110 118 ME-(AU)-[ENV]AN Result

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil							Mett	nod: ME-(AU)-	JENVIAN312
Original	Duplicato		Daramotor	Units	LOR	Original		Criteria %	RPD %
	Duplicate		Parameter			Original			
SE166371.006	LB125996.014		Mercury	mg/kg	0.05	<0.05	<0.05	149	0
SE166371.017	LB125996.024		Mercury	mg/kg	0.05	<0.05	<0.05	187	0
SE166371.039	LB125951.014		Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE166413.003	LB125951.024		Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE166476.006	LB125997.024		Mercury	mg/kg	0.05	0.29	0.28	48	3
SE166477.007	LB125997.014		Mercury	mg/kg	0.05	0.50	0.50	40	1
Moisture Content							Meth	nod: ME-(AU)-	ENVJAN00
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	
SE166371.010	LB125920.011		% Moisture	%w/w	0.5	7.5	7.7	43	2
SE166371.020	LB125920.022		% Moisture	%w/w	0.5	11	13	39	18
SE166371.030	LB125921.011		% Moisture	%w/w	0.5	12	13	38	10
SE166371.040	LB125921.022		% Moisture	%w/w	0.5	8.3	8.6	42	3
PAH (Polynuclear	Aromatic Hydrocarbor	ns) in Soil					Meth	nod: ME-(AU)-	[ENV]AN420
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE166357.031	LB125781.027		Naphthalene	mg/kg	0.1	0	0	200	0
			2-methylnaphthalene	mg/kg	0.1	0	0	200	0
			1-methylnaphthalene	mg/kg	0.1	0	0	200	0
			Acenaphthylene	mg/kg	0.1	0	0	200	0
			Acenaphthene	mg/kg	0.1	0	0	200	0
			Fluorene	mg/kg	0.1	0	0	200	0
			Phenanthrene	mg/kg	0.1	0	0	200	0
			Anthracene	mg/kg	0.1	0.01	0	200	0
			Fluoranthene		0.1	0.01	0	200	0
				mg/kg		0	0	200	0
			Pyrene	mg/kg	0.1				
			Benzo(a)anthracene	mg/kg	0.1	0	0	200	0
			Chrysene	mg/kg	0.1	0.01	0	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	0	0	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	0	0	200	0
			Benzo(a)pyrene	mg/kg	0.1	0	0	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0	0	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	0	0	200	0
			Benzo(ghi)perylene	mg/kg	0.1	0	0	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0</td><td>0</td><td>200</td><td>0</td></lor=0<>	TEQ (mg/kg)	0.2	0	0	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>0.242</td><td>0.242</td><td>134</td><td>0</td></lor=lor<>	TEQ (mg/kg)	0.3	0.242	0.242	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.121</td><td>0.121</td><td>175</td><td>0</td></lor=lor>	TEQ (mg/kg)	0.2	0.121	0.121	175	0
			Total PAH (18)	mg/kg	0.8	0	0	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	_	0.42	0.42	30	0
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.46	0.45	30	2
			d14-p-terphenyl (Surrogate)	mg/kg		0.46	0.45	30	2
SE166371.036	LB125782.023		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
02100071.000	20120102.020		2-methylnaphthalene		0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg mg/kg	0.1	<0.1	<0.1	200	0
					0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg/kg					
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
			Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	0
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Chrysene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	173	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>200</td><td>0</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	200	0
					0.2	-0.2	-0.2	200	
				TEO (ma/ka)	03	<0.3	<0.3	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg) TEQ (mg/kg)</td><td>0.3</td><td><0.3 <0.2</td><td><0.3 <0.2</td><td>134 175</td><td>0</td></lor=lor></lor=lor 	TEQ (mg/kg) TEQ (mg/kg)	0.3	<0.3 <0.2	<0.3 <0.2	134 175	0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

	Aromatic Hydrocarbo	may in Goli (condhu	·					od: ME-(AU)	
Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate		
E166371.036	LB125782.023		Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	30	4
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.4	30	7
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	30	1
tal Recoverable	Metals in Soil/Waste	Solids/Materials by	(ICPOES				Method: ME-	(AU)-[ENV]/	4N040//
riginal	Duplicate		Parameter	Units	LOR	Original	Duplicate		
E166371.007	LB125939.014		Arsenic, As	mg/kg	3	5	4	52	2
2100011001	20120000.011		Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	151	C
			Chromium, Cr	mg/kg	0.3	14	29	32	72
			Copper, Cu	mg/kg	0.5	34	23	32	33
			Lead, Pb	mg/kg	1	14	14	37	3
			Nickel, Ni	mg/kg	0.5	5.9	22	34	116
			Zinc, Zn		0.5	27	33	34	1
E166371.018	LB125939.024		Arsenic, As	mg/kg	3	4	3	57	2
E100371.016	LD125939.024			mg/kg					
			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	(
			Chromium, Cr	mg/kg	0.3	11	8.5	35	2
			Copper, Cu	mg/kg	0.5	5.9	4.7	39	2
			Lead, Pb	mg/kg	1	12	10	39	1
			Nickel, Ni	mg/kg	0.5	2.0	1.4	59	3
			Zinc, Zn	mg/kg	0.5	13	8.5	49	4
E166371.037	LB125940.014		Arsenic, As	mg/kg	3	6	7	46	2
			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	136	
			Chromium, Cr	mg/kg	0.3	21	16	33	3
			Copper, Cu	mg/kg	0.5	9.1	10	35	1
			Lead, Pb	mg/kg	1	25	27	34	
			Nickel, Ni	mg/kg	0.5	5.1	5.5	39	
			Zinc, Zn	mg/kg	0.5	35	40	35	1
E166477.006	LB125940.024		Arsenic, As	mg/kg	3	5	5	50	
			Cadmium, Cd	mg/kg	0.3	0.4	<0.3	116	2
			Chromium, Cr	mg/kg	0.3	9.8	10	35	
			Copper, Cu	mg/kg	0.5	57	62	31	8
			Lead, Pb	mg/kg	1	280	280	30	(
			Nickel, Ni	mg/kg	0.5	4.5	4.6	41	
			Zinc, Zn	mg/kg	0.5	300	230	31	2
RH (Total Recov	erable Hydrocarbons) in Soil					Metho	od: ME-(AU)	-[ENV]
riginal	Duplicate		Parameter	Units	LOR	Original	Duplicate		
E166357.031	LB125781.027		TRH C10-C14	mg/kg	20	0	0	200	(
2100007.001	20120101.021		TRH C15-C28	mg/kg	45	0	0	200	
			TRH C29-C36	mg/kg	45	0	0	200	
						0			
			TRH C37-C40	mg/kg	100	0	0	200 200	
			TRH C10-C36 Total	mg/kg		0	0		
			TRH C10-C40 Total	mg/kg	210			200	
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	0	0	200	
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	0	0	200	
			TRH >C16-C34 (F3)	mg/kg	90	0	0	200	
			TRH >C34-C40 (F4)	mg/kg	120	0	0	200	
E166371.006	LB125781.026		TRH C10-C14	mg/kg	20	<20	0	200	
			TRH C15-C28	mg/kg	45	56	186	67	10
			TRH C29-C36	mg/kg	45	<45	67	126	3
			TRH C37-C40	mg/kg	100	<100	0	200	
			TRH C10-C36 Total	mg/kg	110	<110	253	95	7
			TRH C10-C40 Total	mg/kg	210	<210	233	166	1
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	0	200	
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	0	200	
			TRH >C16-C34 (F3)	mg/kg	90	<90	233	88	89
			TRH >C34-C40 (F4)	mg/kg	120	<120	0	200	
C's in Soil							Metho	od: ME-(AU)	

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Original					1.05			nod: ME-(AU)-	
	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD
SE166371.026	LB125851.014	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.1	4.0	50	1
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.5	4.5	50	0
			d8-toluene (Surrogate)	mg/kg	-	4.0	3.9	50	1
			Bromofluorobenzene (Surrogate)	mg/kg	-	3.6	3.6	50	1
		Totals	Total Xylenes*	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
SE166421.002	LB125851.022	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	0.1	0.1	117	9
			m/p-xylene	mg/kg	0.2	0.7	0.6	61	5
			o-xylene	mg/kg	0.1	0.2	0.2	93	13
		Polycyclic	Naphthalene	mg/kg	0.1	0.2	0.2	83	32
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.7	3.9	50	5
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	3.7	3.8	50	1
			d8-toluene (Surrogate)	mg/kg	-	4.4	3.9	50	11
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.8	4.3	50	10
		Totals	Total Xylenes*	mg/kg	0.3	0.8	0.8	68	6
			Total BTEX	mg/kg	0.6	1.0	0.9	62	6
OCs in Water							Meth	nod: ME-(AU)-	(ENV)AI
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE166321.006	LB125924.024	Monocyclic	Benzene	µg/L	0.5	<0.5	0.02	200	0
		Aromatic	Toluene	µg/L	0.5	<0.5	0.13	200	0
			Ethylbenzene	µg/L	0.5	<0.5	0.03	000	
					0.0	~0.5	0.00	200	0
			m/p-xylene	µg/L	1	<0.5	0.00	200	0
			m/p-xylene o-xylene						
		Surrogates		µg/L	1	<1	0.1	200	0
		Surrogates	o-xylene	μg/L μg/L	1 0.5	<1 <0.5	0.1 0.03	200 200	0
		Surrogates	o-xylene Dibromofluoromethane (Surrogate)	μg/L μg/L μg/L	1 0.5 -	<1 <0.5 5.7	0.1 0.03 6.43	200 200 30	0 0 13
		Surrogates	o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	μg/L μg/L μg/L μg/L	1 0.5 - -	<1 <0.5 5.7 5.2	0.1 0.03 6.43 6.2	200 200 30 30	0 0 13 18
/olatile Petroleum	Hydrocarbons in Soi		o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	µg/L µg/L µg/L µg/L µg/L	1 0.5 - -	<1 <0.5 5.7 5.2 4.9	0.1 0.03 6.43 6.2 5.47 4.67	200 200 30 30 30 30 30	0 0 13 18 11 1
	Hydrocarbons in Sol		o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	μg/L μg/L μg/L μg/L μg/L μg/L	1 0.5 - - -	<1 <0.5 5.7 5.2 4.9 4.6	0.1 0.03 6.43 6.2 5.47 4.67 Mett	200 200 30 30 30 30 30 nod: ME-(AU)-	0 0 13 18 11 1 [ENV]A
Original	Duplicate		o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter	μg/L μg/L μg/L μg/L μg/L μg/L Units	1 0.5 - - - LOR	<1 <0.5 5.7 5.2 4.9 4.6 Original	0.1 0.03 6.43 6.2 5.47 4.67 Meth Duplicate	200 200 30 30 30 30 30 nod: ME-(AU)- Criteria %	0 0 13 18 11 1 [ENV]AI RPD
<mark>/olatile Petroleum</mark> Original SE166371.026			o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter TRH C6-C10	μg/L μg/L μg/L μg/L μg/L μg/L μg/L Units mg/kg	1 0.5 - - - - LOR 25	<1 <0.5 5.7 5.2 4.9 4.6 Original <25	0.1 0.03 6.43 6.2 5.47 4.67 Meth Duplicate <25	200 200 30 30 30 30 hod: ME-(AU)- Criteria % 200	0 0 13 18 11 1 [ENV]A [ENV]A RPD 0
Original	Duplicate	1	o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter TRH C6-C10 TRH C6-C9	μg/L μg/L μg/L μg/L μg/L μg/L Units mg/kg mg/kg	1 0.5 - - - - - - 25 20	<1 <0.5 5.7 5.2 4.9 4.6 Original <25 <20	0.1 0.03 6.43 6.2 5.47 4.67 Meth Duplicate <25 <20	200 200 30 30 30 30 hod: ME-(AU)- Criteria % 200 200	0 0 13 18 11 1 (ENV)A RPD 0 0
Original	Duplicate		o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	μg/L μg/L μg/L μg/L μg/L μg/L Units mg/kg mg/kg mg/kg	1 0.5 - - - - - - 25 20 -	<1 <0.5 5.7 5.2 4.9 4.6 Original <25 <20 4.1	0.1 0.03 6.43 6.2 5.47 4.67 Meth Duplicate <25 <20 4.0	200 200 30 30 30 30 bod: ME-(AU)- Criteria % 200 200 30	0 0 13 18 11 1 (ENVJA) RPD 0 0 1
Original	Duplicate	1	o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg	1 0.5 - - - - - - - - - 25 20 - -	<1 <0.5 5.7 5.2 4.9 4.6 Original <25 <20 4.1 4.5	0.1 0.03 6.43 6.2 5.47 4.67 Meth Duplicate <25 <20 4.0 4.5	200 200 30 30 30 30 criteria % 200 200 30 30	0 0 13 18 11 1 [ENV]AI (ENV]AI 0 0 0 1
Original	Duplicate	1	o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.5 - - - - - - - - 20 - - - -	<1 <0.5 5.7 5.2 4.9 4.6 Original <25 <20 4.1 4.5 4.0	0.1 0.03 6.43 6.2 5.47 4.67 Metr Duplicate <25 <20 4.0 4.5 3.9	200 200 30 30 30 00: ME-(AU)- Criteria % 200 200 200 30 30 30	0 0 13 18 11 1 (ENV]AI (ENV]AI (ENV]AI 0 0 1 0 0 1
Original	Duplicate	I Surrogates	o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.5 - - - - - - - - - - - - - - - - - - -	<1 <0.5 5.7 5.2 4.9 4.6 Original <25 <20 4.1 4.5 4.0 3.6	0.1 0.03 6.43 6.2 5.47 4.67 Metr Duplicate <25 <20 4.0 4.5 3.9 3.6	200 200 30 30 30 Criteria % 200 200 30 30 30 30	0 0 13 18 11 1 (ENV]AI (ENV]AI (ENV]AI (D) 0 0 1 0 1 1 0 1
Original	Duplicate	1	o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.5 - - - - - - - - - - - - - - - - 0.1	<1 <0.5 5.7 5.2 4.9 4.6 Original <25 <20 4.1 4.5 4.0 3.6 <0.1	0.1 0.03 6.43 6.2 5.47 4.67 Metr Duplicate <25 <20 4.0 4.5 3.9 3.6 <0.1	200 200 30 30 30 Criteria % 200 200 30 30 30 30 30 200	0 0 13 18 11 1 (ENV)AI (ENV)AI (ENV)AI (ENV)AI 0 0 1 1 0 1 1 0
Original SE166371.026	Duplicate LB125851.014	I Surrogates	o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.5 - - - - - - - - - - - - 0.1 25	<1 <0.5 5.7 5.2 4.9 4.6 Original <25 <20 4.1 4.5 4.0 3.6 <0.1 <25	0.1 0.03 6.43 6.2 5.47 4.67 Metr Duplicate <25 <20 4.0 4.5 3.9 3.6 <0.1 <25	200 200 30 30 30 Criteria % 200 200 30 30 30 30 30 200 200	0 0 13 18 11 1 (ENV)AI (ENV)AI 0 0 0 1 1 0 1 1 0 0 0 0
Original SE166371.026	Duplicate	I Surrogates	o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) Bramet (Surrogate) Benzene (F0) TRH C6-C10 TRH C6-C10	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1 0.5 - - - - 25 20 - - - - - - - 0.1 25 25	<1 <1 <0.5 5.7 5.2 4.9 4.6 Original <25 <20 4.1 4.5 4.0 3.6 <0.1 <25 <25 	0.1 0.03 6.43 6.2 5.47 4.67 Duplicate <25 <20 4.0 4.5 3.9 3.6 <0.1 <25 <25	200 200 30 30 30 mod: ME-(AU)- Criteria % 200 200 200 30 30 30 30 30 30 200 200 2	0 0 13 18 11 1 (ENVJA) (ENVJA) (ENVJA) 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0
Original SE166371.026	Duplicate LB125851.014	Surrogates	o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C10 TRH C6-C9	μg/L μg/L μg/L μg/L μg/L μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.5 - - - - 25 20 - - - - - - 0.1 25 25 20	<1 <1 <0.5 5.7 5.2 4.9 4.6 Original <25 <20 4.1 4.5 4.0 3.6 <0.1 <25 <25 <20 	0.1 0.03 6.43 6.2 5.47 4.67 Meth Duplicate <25 <20 4.0 4.5 3.9 3.6 <0.1 <25 <25 <20	200 200 30 30 30 Criteria % 200 200 30 30 30 30 30 30 200 200 200 169 200	0 0 13 18 11 1 (ENV)A (RPD 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
Original SE166371.026	Duplicate LB125851.014	I Surrogates	o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	μg/L μg/R mg/kg	1 0.5 - - - 25 20 - - - - - - 0.1 25 25 20 -	<1 <1 <0.5 5.7 5.2 4.9 4.6 Original <25 <20 4.1 4.5 4.0 3.6 <0.1 <25 <25 <20 3.7 	0.1 0.03 6.43 6.2 5.47 4.67 Meth Duplicate <25 <20 4.0 4.5 3.9 3.6 <0.1 <25 <25 <20 3.9	200 200 30 30 30 Criteria % 200 200 30 30 30 30 30 30 200 200 200 169 200 30	0 0 133 18 111 1 1 (ENVJAI 8 PD 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 5 5
Original SE166371.026	Duplicate LB125851.014	Surrogates	o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter TRH C6-C10 TRH C6-C9 Dibromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C10 TRH C6-C10 d4-1,2-dichloroethane (Surrogate)	μg/L μg/kg mg/kg	1 0.5 - - - 25 20 - - - - 0.1 25 25 20 - - - - - - - - - - - - - - - - - -	<1 <1 <0.5 5.7 5.2 4.9 4.6 Original <25 <20 4.1 4.5 4.0 3.6 <0.1 <25 <20 3.7 3.7 	0.1 0.03 6.43 6.2 5.47 4.67 Metr Duplicate <25 <20 4.0 4.5 3.9 3.6 <0.1 <25 <25 <20 3.9 3.6	200 200 30 30 30 0 Criteria % 200 200 30 30 30 30 200 200 200 169 200 30 30 30 30 30 30 30 30 30 30 30 30 3	0 0 0 0 133 188 1111 1 1 1 1 1 1 1 1 1 1 1 1 1
Original	Duplicate LB125851.014	Surrogates	o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C10 d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	μg/L ug/kg mg/kg mg/kg	1 0.5 - - - - 25 20 - - - - - 0.1 25 20 - - - 0.1 25 20 - - - - - - - - - - - - - - - - -	<1 <1 <0.5 5.7 5.2 4.9 4.6 Original <25 <20 4.1 4.5 4.0 3.6 <0.1 <25 <20 3.7 3.7 4.4 	0.1 0.03 6.43 6.2 5.47 4.67 Metr Duplicate <25 <20 4.0 4.5 3.9 3.6 <0.1 <25 <25 <20 3.9 3.8 3.8 3.9	200 200 30 30 30 Criteria % 200 200 30 30 30 200 200 169 200 169 200 30 30 30 30 30 30 30 30 30 30 30 30 3	0 0 13 18 11 1 (ENV)AI RPD 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 5 1 1
Original SE166371.026	Duplicate LB125851.014	Surrogates	o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter TRH C6-C10 TRH C6-C9 Dibromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C10 TRH C6-C10 d4-1,2-dichloroethane (Surrogate)	μg/L μg/kg mg/kg	1 0.5 - - - 25 20 - - - - 0.1 25 25 20 - - - - - - - - - - - - - - - - - -	<1 <1 <0.5 5.7 5.2 4.9 4.6 Original <25 <20 4.1 4.5 4.0 3.6 <0.1 <25 <20 3.7 3.7 	0.1 0.03 6.43 6.2 5.47 4.67 Metr Duplicate <25 <20 4.0 4.5 3.9 3.6 <0.1 <25 <25 <20 3.9 3.6	200 200 30 30 30 0 Criteria % 200 200 30 30 30 30 200 200 200 169 200 30 30 30 30 30 30 30 30 30 30 30 30 3	0 0 0 133 188 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

lercury in Soil							Method: ME-(AU)-[ENV]AN3
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
B125951.002		Mercury	mg/kg	0.05	0.21	0.2	70 - 130	103
B125996.002		Mercury	mg/kg	0.05	0.21	0.2	70 - 130	105
B125997.002		Mercury	mg/kg	0.05	0.21	0.2	70 - 130	103
C Pesticides in S	ioll						Method: ME-(AU)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
B125781.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	113
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	110
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	113
		Dieldrin	mg/kg	0.2	<0.2	0.2	60 - 140	98
		Endrin	mg/kg	0.2	0.2	0.2	60 - 140	113
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	113
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.13	0.15	40 - 130	85
B125782.002		Heptachlor	mg/kg	0.1	0.3	0.2	60 - 140	125
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	118
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	125
		Dieldrin	mg/kg	0.2	0.2	0.2	60 - 140	108
		Endrin	mg/kg	0.2	0.2	0.2	60 - 140	121
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	123
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.12	0.15	40 - 130	81
AH (Polynuclear)	Aromatic Hydroca	irbons) in Soil					Method: ME-(AU)-[ENV]AN
ample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
B125781.002		Naphthalene	mg/kg	0.1	3.8	4	60 - 140	95
		Acenaphthylene	mg/kg	0.1	3.1	4	60 - 140	78
		Acenaphthene	mg/kg	0.1	3.9	4	60 - 140	98
		Phenanthrene	mg/kg	0.1	3.1	4	60 - 140	78
		Anthracene	mg/kg	0.1	3.4	4	60 - 140	84
		Fluoranthene	mg/kg	0.1	3.3	4	60 - 140	82
		Pyrene	mg/kg	0.1	3.4	4	60 - 140	85
		Benzo(a)pyrene		0.1	3.8	4	60 - 140	96
		Delizo(a)pyrelie	mg/kg					80
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg mg/kg	-	0.4	0.5	40 - 130	
	Surrogates			-	0.4 0.5	0.5 0.5	40 - 130 40 - 130	92
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg					92 84
B125782.002	Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	mg/kg mg/kg	-	0.5	0.5	40 - 130	
B125782.002	Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	mg/kg mg/kg mg/kg	-	0.5 0.4	0.5 0.5	40 - 130 40 - 130	84
B125782.002	Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Naphthalene	mg/kg mg/kg mg/kg mg/kg	- - 0.1	0.5 0.4 4.1	0.5 0.5 4	40 - 130 40 - 130 60 - 140	84 102
B125782.002	Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Naphthalene Acenaphthylene	mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.1 0.1	0.5 0.4 4.1 4.7	0.5 0.5 4 4	40 - 130 40 - 130 60 - 140 60 - 140	84 102 116
B125782.002	Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Naphthalene Acenaphthylene Acenaphthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.1 0.1 0.1	0.5 0.4 4.1 4.7 4.2	0.5 0.5 4 4 4	40 - 130 40 - 130 60 - 140 60 - 140 60 - 140	84 102 116 104
B125782.002	Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Naphthalene Acenaphthylene Acenaphthene Phenanthrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.1 0.1 0.1 0.1	0.5 0.4 4.1 4.7 4.2 3.7	0.5 0.5 4 4 4 4 4	40 - 130 40 - 130 60 - 140 60 - 140 60 - 140 60 - 140	84 102 116 104 93
B125782.002	Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.1 0.1 0.1 0.1 0.1 0.1	0.5 0.4 4.1 4.7 4.2 3.7 3.8	0.5 0.5 4 4 4 4 4 4 4	40 - 130 40 - 130 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	84 102 116 104 93 95
B125782.002	Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 0.4 4.1 4.7 4.2 3.7 3.8 3.9	0.5 0.5 4 4 4 4 4 4 4 4 4	40 - 130 40 - 130 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	84 102 116 104 93 95 97
B125782.002	Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 0.4 4.1 4.7 4.2 3.7 3.8 3.9 4.0	0.5 0.5 4 4 4 4 4 4 4 4 4 4	40 - 130 40 - 130 60 - 140 60 - 140	84 102 116 104 93 95 97 99
B125782.002		d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 0.4 4.1 4.7 4.2 3.7 3.8 3.9 4.0 4.7	0.5 0.5 4 4 4 4 4 4 4 4 4 4 4	40 - 130 40 - 130 60 - 140 60 - 140	84 102 116 104 93 95 97 97 99 118
B125782.002		d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 0.4 4.1 4.7 4.2 3.7 3.8 3.9 4.0 4.7 0.5	0.5 0.5 4 4 4 4 4 4 4 4 4 4 4 0.5	40 - 130 40 - 130 60 - 140 60 - 140 40 - 130	84 102 116 104 93 95 97 99 118 96
		d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Naphthalene Acenaphthylene Acenaphthylene Acenaphthene Phenanthrene Phenanthrene Phuroanthrene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 -	0.5 0.4 4.1 4.7 4.2 3.7 3.8 3.9 4.0 4.7 0.5 0.5	0.5 0.5 4 4 4 4 4 4 4 4 4 4 4 0.5 0.5 0.5 0.5	40 - 130 40 - 130 60 - 140 60 - 140 40 - 130 40 - 130	84 102 116 104 93 95 97 99 118 96 94 80
LB125782.002 CBs in Soil Sample Number	Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Naphthalene Acenaphthylene Acenaphthylene Acenaphthene Phenanthrene Phenanthrene Phuroanthrene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 -	0.5 0.4 4.1 4.7 4.2 3.7 3.8 3.9 4.0 4.7 0.5 0.5	0.5 0.5 4 4 4 4 4 4 4 4 4 4 4 0.5 0.5 0.5 0.5	40 - 130 40 - 130 60 - 140 60 - 140 40 - 130 40 - 130 Method: ME-(AU	84 102 116 104 93 95 97 99 118 96 94 80 80
CBs in Soll	Surrogates	d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 - -	0.5 0.4 4.1 4.7 4.2 3.7 3.8 3.9 4.0 4.7 0.5 0.5 0.4	0.5 0.5 4 4 4 4 4 4 4 4 4 4 0.5 0.5 0.5	40 - 130 40 - 130 60 - 140 60 - 140 40 - 130 40 - 130 Method: ME-(AU	84 102 116 104 93 95 97 99 118 96 94 80 80

Sample Number Parameter LOR Result Expected Criteria % Recovery % LB125939.002 Arsenic, As 51 50 mg/kg 3 Cadmium. Cd 0.3 49 50 mg/kg Chromium, Cr mg/kg 0.3 50 50 Copper, Cu mg/kg 0.5 51 50 Lead, Pb 50 50 mg/kg 1 Nickel, Ni mg/kg 0.5 50 50 0.5 51 50 Zinc, Zn mg/kg

LB125940.002

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

Arsenic, As

Cadmium, Cd

101

98

100

102

99

101

102

95

Method: ME-(AU)-[ENV]AN040/AN320

80 - 120

80 - 120

80 - 120

80 - 120

80 - 120

80 - 120

80 - 120

80 - 120

80 - 120

48

47

3

0.3

mg/kg

mg/kg

50

50

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB125940.002		Chromium, Cr		0.3	49	50	80 - 120	97
_B125940.002			mg/kg					
		Copper, Cu	mg/kg	0.5	50	50	80 - 120	100
		Lead, Pb	mg/kg	1	48	50	80 - 120	96
		Nickel, Ni	mg/kg	0.5	49	50	80 - 120	98
		Zinc, Zn	mg/kg	0.5	49	50	80 - 120	98
RH (Total Recove	rable Hydrocarboi	ns) in Soil		-			Method: ME-(A	U)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
_B125781.002		TRH C10-C14	mg/kg	20	37	40	60 - 140	93
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	93
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	80
	TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	38	40	60 - 140	95
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	88
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	80
_B125782.002		TRH C10-C14	mg/kg	20	37	40	60 - 140	93
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	93
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	80
	TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	38	40	60 - 140	95
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	88
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	80
'OC's in Soil							Method: ME-(A	
		D	Units	LOR	Result			
Sample Number	Manager	Parameter				Expected	Criteria %	
_B125851.002	Monocyclic	Benzene	mg/kg	0.1	1.8	2.9	60 - 140	63
	Aromatic	Toluene	mg/kg	0.1	2.1	2.9	60 - 140	73
		Ethylbenzene	mg/kg	0.1	2.1	2.9	60 - 140	73
		m/p-xylene	mg/kg	0.2	4.4	5.8	60 - 140	76
		o-xylene	mg/kg	0.1	2.1	2.9	60 - 140	73
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.6	5	60 - 140	73
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.1	5	60 - 140	81
		d8-toluene (Surrogate)	mg/kg	-	4.9	5	60 - 140	98
		Bromofluorobenzene (Surrogate)	mg/kg	-	4.2	5	60 - 140	84
OCs in Water							Method: ME-(A	U)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
_B125924.002	Monocyclic	Benzene	μg/L	0.5	50	45.45	60 - 140	109
	Aromatic	Toluene	µg/L	0.5	50	45.45	60 - 140	110
		Ethylbenzene	µg/L	0.5	50	45.45	60 - 140	109
		m/p-xylene	µg/L	1	99	90.9	60 - 140	109
		o-xylene	μg/L	0.5	50	45.45	60 - 140	109
	Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	4.7	5	60 - 140	94
		d4-1,2-dichloroethane (Surrogate)	μg/L	_	5.1	5	60 - 140	103
		d8-toluene (Surrogate)	μg/L	-	4.9	5	60 - 140	97
		Bromofluorobenzene (Surrogate)	μg/L		4.5	5	60 - 140	89
			P9'E		4.0			
olatile Petroleum I	Hydrocarbons in S						Nethod: ME-(A	<u> </u>
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB125851.002		TRH C6-C10	mg/kg	25	<25	24.65	60 - 140	88
		TRH C6-C9	mg/kg	20	<20	23.2	60 - 140	85
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.6	5	60 - 140	73
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.1	5	60 - 140	81
		d8-toluene (Surrogate)	mg/kg	-	4.9	5	60 - 140	98
		d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg mg/kg	-	4.9 4.2	5	60 - 140 60 - 140	98 84

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil							Me	sthod: ME-(AU)-[ENV]AN31
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery
SE166356.006	LB125996.004		Mercury	mg/kg	0.05	0.22	0.06	0.2	81
SE166371.018	LB125997.004		Mercury	mg/kg	0.05	0.22	<0.05	0.2	103
SE166371.023	LB125951.004		Mercury	mg/kg	0.05	0.21	<0.05	0.2	83
PAH (Polynuclea	ar Aromatic Hydrocarbons)	in Soil					Me	othod: ME-(AU)-[ENV]AN42
QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%	, D
SE166357.023	LB125781.026		Naphthalene	mg/kg	0.1	0	4	93]
			2-methylnaphthalene	mg/kg	0.1	0	-	-	
			1-methylnaphthalene	mg/kg	0.1	0	-	-	
			Acenaphthylene	mg/kg	0.1	0	4	83	
			Acenaphthene	mg/kg	0.1	0	4	96	
			Fluorene	mg/kg	0.1	0	-	-	
			Phenanthrene	mg/kg	0.1	0	4	84	
			Anthracene	mg/kg	0.1	0	4	83	
			Fluoranthene	mg/kg	0.1	0	4	81	
			Pyrene	mg/kg	0.1	0	4	88	
			Benzo(a)anthracene	mg/kg	0.1	0	-	-	
			Chrysene	mg/kg	0.1	0.01	-	-	
			Benzo(b&j)fluoranthene	mg/kg	0.1	0	-	-	
			Benzo(k)fluoranthene	mg/kg	0.1	0	-	-	
			Benzo(a)pyrene	mg/kg	0.1	0	4	97	
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0	-	-	
			Dibenzo(ah)anthracene	mg/kg	0.1	0	-	-	
			Benzo(ghi)perylene	mg/kg	0.1	0	-	-	
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td>0</td><td>-</td><td>-</td><td></td></lor=0<>	TEQ	0.2	0	-	-	
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>0.242</td><td>-</td><td>-</td><td></td></lor=lor<>	TEQ (mg/kg)	0.3	0.242	-	-	
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.121</td><td>-</td><td>-</td><td></td></lor=lor>	TEQ (mg/kg)	0.2	0.121	-	-	
			Total PAH (18)	mg/kg	0.8	0	-	-	
	Su	urrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.41	-	86	
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.44	-	88	
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.45	-	90	

Total Recoverable Metals in Soli/Waste Solids/Materials by ICPOES					Method: ME-(AU)-[ENV]AN040/AN320			
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE166356.007	LB125939.004	Arsenic, As	mg/kg	3	53	7	50	93
		Cadmium, Cd	mg/kg	0.3	43	0.3	50	84
		Chromium, Cr	mg/kg	0.3	56	13	50	87
		Copper, Cu	mg/kg	0.5	110	69	50	84
		Lead, Pb	mg/kg	1	160	130	50	56 ④
		Nickel, Ni	mg/kg	0.5	52	10	50	84
		Zinc, Zn	mg/kg	0.5	190	170	50	43 ④
SE166371.020	LB125940.004	Arsenic, As	mg/kg	3	44	3	50	83
		Cadmium, Cd	mg/kg	0.3	41	<0.3	50	81
		Chromium, Cr	mg/kg	0.3	49	7.3	50	83
		Copper, Cu	mg/kg	0.5	52	8.9	50	86
		Lead, Pb	mg/kg	1	51	15	50	72
		Nickel, Ni	mg/kg	0.5	49	7.4	50	82
		Zinc, Zn	mg/kg	0.5	65	24	50	83

TRH (Total Recoverable Hydrocarbons) in Soil

QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%	
SE166357.023	LB125781.028		TRH C10-C14	mg/kg	20	0	40	108	
			TRH C15-C28	mg/kg	45	7	40	118	
			TRH C29-C36	mg/kg	45	0	40	103	
			TRH C37-C40	mg/kg	100	0	-	-	
			TRH C10-C36 Total	mg/kg	110	7	-	-	
			TRH C10-C40 Total	mg/kg	210	13	-	-	
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	0	40	110	
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	0	-	-	
			TRH >C16-C34 (F3)	mg/kg	90	13	40	103	
					TRH >C34-C40 (F4)	mg/kg	120	0	-

Method: ME-(AU)-[ENV]AN403

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC's in Soil)-[ENV]AN43
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recovery
SE166371.003	LB125851.004	Monocyclic	Benzene	mg/kg	0.1	1.9	<0.1	2.9	64
		Aromatic	Toluene	mg/kg	0.1	2.0	<0.1	2.9	67
			Ethylbenzene	mg/kg	0.1	2.3	<0.1	2.9	80
			m/p-xylene	mg/kg	0.2	4.9	<0.2	5.8	85
			o-xylene	mg/kg	0.1	2.4	<0.1	2.9	82
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.7	3.8	-	74
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.1	4.2	-	83
			d8-toluene (Surrogate)	mg/kg	-	3.7	3.8	-	73
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.2	3.5	-	85
		Totals	Total Xylenes*	mg/kg	0.3	7.3	<0.3	-	-
			Total BTEX	mg/kg	0.6	13	<0.6	-	-
OCs in Water							Me	thod: ME-(AU)-[ENV]AN43
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Original	Spike	Recovery%	5
SE166321.008	LB125924.026	Monocyclic	Benzene	µg/L	0.5	<0.5	45.45	93	1
		Aromatic	Toluene	µg/L	0.5	<0.5	45.45	103	
			Ethylbenzene	µg/L	0.5	<0.5	45.45	94	
			m/p-xylene	µg/L	1	<1	90.9	95	
			o-xylene	µg/L	0.5	<0.5	45.45	99	
		Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	5.1	-	116	
			d4-1,2-dichloroethane (Surrogate)	µg/L	-	4.8	-	114	1
			d8-toluene (Surrogate)	µg/L	-	4.4	-	102	1
			Bromofluorobenzene (Surrogate)	µg/L	-	4.2	-	89	
/olatile Petroleu	m Hydrocarbons in	Soil					Me	thod: ME-(AU)-[ENV]AN43
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recovery
SE166371.003	LB125851.004		TRH C6-C10	mg/kg	25	<25	<25	24.65	79
			TRH C6-C9	mg/kg	20	<20	<20	23.2	76
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.7	3.8	-	74
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.1	4.2	-	83
			d8-toluene (Surrogate)	mg/kg	-	3.7	3.8	-	73
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.2	3.5	-	85
		VPH F	Benzene (F0)	mg/kg	0.1	1.9	<0.1	-	-
		VIIII	Delizence (10)	inging	0.1	1.0			

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service .
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

CLIENT DETAIL	S	LABORATORY DETA	ILS
Contact	Craig Cowper	Manager	Huong Crawford
Client	SLR CONSULTING AUSTRALIA PTY LTD	Laboratory	SGS Alexandria Environmental
Address	Lego Building, 2 Lincoln Street (PO Box 176 NSW LANECOVE 1595) LANECOVE NSW 2066	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 9427 8100	Telephone	+61 2 8594 0400
Facsimile	02 9427 8200	Facsimile	+61 2 8594 0499
Email	ccowper@slrconsulting.com	Email	au.environmental.sydney@sgs.com
Project	610.17191.00001 Pymble	Samples Received	Wed 7/6/2017
Order Number	22711	Report Due	Thu 15/6/2017
Samples	41	SGS Reference	SE166371

_ SUBMISSION DETAILS

This is to confirm that 41 samples were received on Wednesday 7/6/2017. Results are expected to be ready by Thursday 15/6/2017. Please quote SGS reference SE166371 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested
- Yes SGS Yes 7/6/2017 Yes 9.4°C Standard

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 40 Soil, 1 Water COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

TP01/0.0-0.2 labelled as TP02/0.0-0.2.

4 soil and 1 water samples have been placed on hold.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

__ CLIENT DETAILS __

- SUMMARY OF ANALYSIS -

Client SLR CONSULTING AUSTRALIA PTY LTD

Project 610.17191.00001 Pymble

No.	Sample ID	OC Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Metals in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	TP01/0.0-0.2	-	26	-	7	-	-	-
002	TP02/0.2-0.4	28	26	-	-	-	-	-
003	TP02/0.9-0.8	-	-	11	7	10	12	8
004	TP02/0.8-1.0	-	-	-	7	-	-	-
005	TP03/0.0-0.1	-	26	-	7	-	-	-
006	TP04/0.1-0.3	28	26	-	7	10	12	8
007	TP05/0.3-0.5	-	26	11	7	-	-	-
008	TP05/1.1-1.3	-	-	-	-	10	12	8
009	TP06/0.0-0.2	-	26	-	7	-	-	-
010	TP06/0.2-0.4	-	-	-	7	-	-	-
011	TP07/0.0-0.1	-	26	-	7	-	-	-
012	TP08/0.15-0.35	28	26	-	7	10	12	8
013	TP09/0.2-0.4	-	26	11	7	10	12	8
014	TP10/0.7-0.9	-	-	-	7	-	-	-
015	TP10/0.1-0.3	28	-	-	7	-	-	-
016	TP10/0.7-0.9	-	26	-	-	-	-	-
017	TP10/1.3-1.5	-	-	-	7	10	12	8
018	TP11/0.3-0.5	-	-	-	7	10	12	8
019	TP11/1.0-1.2	-	26	-	-	-	-	-
020	TP12/0.0-0.2	-	26	-	7	10	12	8
021	TP12/0.3-0.5	-	-	-	7	-	-	-
022	TP13/0.0-0.2	-	26	-	-	-	-	-
023	TP13/0.6-0.8	-	-	11	7	-	-	-
024	TP13/1.1-1.3	-	-	-	7	10	12	8

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

__ CLIENT DETAILS __

- SUMMARY OF ANALYSIS

Client SLR CONSULTING AUSTRALIA PTY LTD

Project 610.17191.00001 Pymble

No.	Sample ID	OC Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Metals in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
025	TP14/0.0-0.2	-	26	-	-	-	-	-
026	TP14/0.3-0.5	28	-	-	7	10	12	8
027	TP15/0.0-0.2	-	-	11	7	-	-	-
028	TP15/0.68	-	26	-	-	-	-	-
029	TP15/1.3-1.5	28	-	-	7	-	-	-
030	TP15/2.0-2.2	-	-	-	-	10	12	8
031	TP16/0.1-0.3	-	26	-	-	-	-	-
032	TP16/0.8-1.0	-	26	-	7	-	-	-
033	TP16/1.4-1.6	-	-	11	7	-	-	-
034	TP16/1.8-2.0	-	-	-	-	10	12	8
035	DUP01	-	26	-	-	-	-	-
036	DUP01A	-	26	-	-	-	-	-
037	DUP02	-	-	-	7	-	-	-
038	DUP02A	-	-	-	7	-	-	-
039	DUP03	-	-	-	7	-	-	-
040	DUP03A	-	-	-	7	-	-	-

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS _

Client SLR CONSULTING AUSTRALIA PTY LTD

Project 610.17191.00001 Pymble

No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content
001	TP01/0.0-0.2		1	1
002	TP02/0.2-0.4	1	_	1
003			1	1
003	TP02/0.9-0.8 TP02/0.8-1.0		1	1
			1	1
005	TP03/0.0-0.1			
006	TP04/0.1-0.3	1	1	1
007	TP05/0.3-0.5	1	1	1
008	TP05/1.1-1.3	1	-	1
009	TP06/0.0-0.2	-	1	1
010	TP06/0.2-0.4	-	1	1
011	TP07/0.0-0.1	-	1	1
012	TP08/0.15-0.35	1	1	1
013	TP09/0.2-0.4	1	1	1
014	TP10/0.7-0.9	-	1	1
015	TP10/0.1-0.3	-	1	1
016	TP10/0.7-0.9	1	-	1
017	TP10/1.3-1.5	-	1	1
018	TP11/0.3-0.5	1	1	1
019	TP11/1.0-1.2	-	-	1
020	TP12/0.0-0.2	-	1	1
021	TP12/0.3-0.5	-	1	1
022	TP13/0.0-0.2	1	-	1
023	TP13/0.6-0.8	-	1	1
024	TP13/1.1-1.3		1	1

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

__ CLIENT DETAILS __

Client SLR CONSULTING AUSTRALIA PTY LTD

Project 610.17191.00001 Pymble

No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content	VOCs in Water
025	TP14/0.0-0.2	1	-	1	-
026	TP14/0.3-0.5	-	1	1	-
027	TP15/0.0-0.2	1	1	1	-
028	TP15/0.68	-	-	1	-
029	TP15/1.3-1.5	1	1	1	-
030	TP15/2.0-2.2	-	-	1	-
031	TP16/0.1-0.3	1	-	1	-
032	TP16/0.8-1.0	1	1	1	-
033	TP16/1.4-1.6	-	1	1	-
034	TP16/1.8-2.0	-	-	1	-
035	DUP01	-	-	1	-
036	DUP01A	-	-	1	-
037	DUP02	-	1	1	-
038	DUP02A	-	1	1	-
039	DUP03	-	1	1	-
040	DUP03A	-	1	1	-
041	TRIP SPIKE	-	-	-	12

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

SGS				С	HA	N C	OF C	US	τοι	DY 8	& A1	NAL	YSI	S R	EQI	JEST				Page1 of _	_5		
SGS Environmental S	ervices	Compan	y Nam	ne:	SLR (Consu	lting							Proje	ct Nam	e/No:	610.	17191.000	001 Pymł	ble			
Unit 16, 33 Maddox St	reet	Address	:		2 Lind	coln S	treet							Purch	nase Or	der No:	SGS	PO 2271	1 Eurofi	ins PO 22712			
Alexandria NSW 2015				_	Lane	Cove	NSW 2	2066						Resu	Its Req	uired By:	Stan	dard 5 da	y Turnaro	ound			
Telephone No: (02) 85	940400													Telep	hone:		0400	882 269					
Facsimile No: (02) 85	5940499	Contact	Name	:	Craig	Cowp	er							Facsi	mile:		02 94	427 8200					
Email: au.samplereceipt.sy	dney@sgs.com													Emai	Result	is:	CCOW	per@slrc	onsulting	l.com			
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	TRH / BTEX	РАН	OCP	PCB	Metals	Asbestos (absence / presence)	Asbestos ID Building Materials	VOC (8260)	BTEX		- 10 - 10	Notes SGS EHS Alexandria Laborato					
TP01/0.0-0.2	06/06/17	1		X	lce	2		X			X												
TP02/0.2-0.4	06/06/17	2		X	Ice	2		X	X	1.12		X									`		
TP02/0.6-0.8	06/06/17	3		X	lce	2	X			X	X									166371 COC			
TP02/0.8-1.0	06/06/17	4		X	lce	2					X								nece	iveu. 07 – Juli – 20	"		
TP03/0.0-0.1	06/06/17	5		X	lce	2		X			X					4			1	1			
TP03/0.1-0.3	06/06/17			X	Ice	2														Hold			
TP04/0.1-0.3	06/06/17	6		X	Ice	2	x	X	X		X	X											
TP04/0.6-0.8	06/06/17			X	lce	2					1						-			Hold			
TP05/0.3-0.5	06/06/17	7		X	lce	2		X		X	X	X											
TP05/1.1-1.3	06/06/17	8		X	Ice	2	x					X							-				
Relinquished By: Craig Co	bwper		e/Tim	e: 7 Ju	une 20	17	A		1		Receiv	ved By	1:	21	uus	/		Date/Time	e	3/1/17	03:00		
Relinquished By:		Dat	e/Tim	e:			+					ved By		and a	/			Date/Time	е	701			
Samples Intact: Yes/ No		Ter	npera	ture:	Ambie	ent /C	hilled				Samp	e Coo	ler Se	aled:	Yes/	No		aborator	y Quota	tion No: SLR Pricing	2015		
1	Со	mmen	ts: Me	thods	and d	etectio	on limi	ts to s	uit NE	EPM 2	013 ar	nd AN	ZECC	2000		I	_ab Quot	ation No	: Eurofins Version 1	3.CS2			

SGS				C	HA	IN C	OF C	US	TOE	DY a	& A1	NAL	YSI	S R	EQ	UEST					Page2_ of5	
SGS Environmental S	ervices	Compar	ny Nam	ne:	SLR	Consu	lting							Proje	ct Nan	ne/No:	610.	17191.	00001	Pymb	le	
Unit 16, 33 Maddox St	reet	Address	:		2 Lind	coln S	treet							Purch	nase C	order No:	SGS	S PO 22	2711	Eurofir	ns PO 22712	
Alexandria NSW 2015					Lane	Cove	NSW :	2066						Resu	lts Red	quired By:	Star	ndard 5	day T	urnaro	und	
Telephone No: (02) 85	940400													Telep	hone:		0400	0 882 2	69			
Facsimile No: (02) 85	5940499	Contact	Name		Craig	Cowp	er						-	Facsi	mile:		02 9	427 82	00			
Email: au.samplereceipt.sy	dney@sgs.com													Email	Resu	lts:	CCOV	vper@s	sircons	ulting.	com	
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	TRH / BTEX	РАН	OCP	РСВ	Metals	Asbestos (absence / presence)	Asbestos ID Building Materials	VOC (8260)	BTEX			Notes				
TP06/0.0-0.2	06/06/17	9		X	Ice	2		X			X											
TP06/0.2-0.4	06/06/17	10		X	Ice	2					X											
TP07/0.0-0.1	06/06/17	11		X	lce	2		X			X											
TP07/0.1-0.3	06/06/17			X	Ice	2															Hold	
TP08/0.15-0.35	06/06/17	12		X	lce	2	Х	X	X		X	X										
TP08/0.6-0.8	06/06/17			Х	lce	2															Hold	
TP09/0.2-0.4	06/06/17	13		X	lce	2	X	X		X	X	X										
TP09/0.7-0.9	06/06/17	14		X	Ice	2					X											
TP10/0.1-0.3	06/06/17	15		X	Ice	2			X		X											
TP10/0.7-0.9	06/06/17	16		X	lce	2		X				X										
Relinquished By: Craig Co		Date/Time: 7				17	S				Receiv	ved By		TH	U			Date/T	Time	71	The OSAN	
Relinquished By:		Dat	te/Tim	e:			5				Receiv	ved By	<i>r</i> :	C				Date/T	īme	-19	property.	
Samples Intact: Yes No		Ter	npera	ture:	Ambie	ent/C	hilled				Sampl	e Coo	ler Se	aled:	Yes/	No		Labora	atory C	Quotati	ion No: SLR Pricing 2015	
				ts: Me	thods	and d	etectio	on limi	ts to s	uit NE	EPM 20	013 ar	nd AN	ZECC	2000			Lab Q	uotatic	on No:	Eurofins Version 13.CS2	

SGS	F				СНА	IN C	DF C	ะบร	τοι	DY 8	& AI	NAL	YSI	SR	EQ	UEST					Page3	of5
SGS Environmental S	ervices	Comp	any Na	me:	SLR	Consu	lting							Proje	ct Nar	me/No:	610.	17191.	00001	Pymb	le	
Unit 16, 33 Maddox St	reet	Addre	SS:		2 Lin	coln S	treet							Purcl	hase C	Order No:	SGS	5 PO 22	2711	Eurofir	ns PO 22712	
Alexandria NSW 2015					Lane	Cove	NSW	2066						Resu	Its Re	quired By:	Stan	idard 5	day Tu	urnaro	und	
Telephone No: (02) 85	940400													Telep	hone:		0400	0 882 2	69			
Facsimile No: (02) 85	5940499	Conta	ntact Name: Craig Cowper Facsimile: 02 9427 8							427 82	00											
Email: au.samplereceipt.sy	dney@sgs.con	n												Emai	l Resu	lts:	CCOV	vper@s	Ircons	ulting.	com	
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	TRH / BTEX	РАН	OCP	PCB	Metals	Asbestos (absence / presence)	Asbestos ID Building Materiale	VOC (8260)	ВТЕХ		Notes				Notes	
TP10/1.3-1.5	06/06/17	17		X	lce	2	Х				X											
TP11/0.3-0.5	06/06/17	13		X	Ice	2	Х			I.	X	Х										
TP11/1.0-1.2	06/06/17	19		X	Ice	2		X														
TP12/0.0-0.2	06/06/17	20		X	Ice	2	Х	X			X											
TP12/0.3-0.5	06/06/17	21		X	Ice	2					X						-					
TP13/0.0-0.2	06/06/17	22		X	Ice	2		X				X										
TP13/0.6-0.8	06/06/17	23		X	Ice	2				Х	X											
TP13/1.1-1.3	06/06/17	24		X	Ice	2	X				X						1					
TP14/0.0-0.2	06/06/17	25		X	Ice	2		X				X										
TP14/0.3-0.5	06/06/17	Z6		X	lce	2	х		X		X											
Relinquished By: Craig Co	owper	C	Date/Time: 7 June 2017						Receiv	ed By	. (De	en	8		Date/T	ïme	7/	UMPC.	3000		
Relinquished By:		C	ate/Tir	ne:			-				Receiv	ved By	<i>'</i> :	-	1			Date/T	ïme	40	1-1-1-	pro
Samples Intact: Yes/ No		Т	emper	ature:	Ambie	ent (C	hilled				Samp	e Coo	ler Se	aled:	Yes	/ No		Labora	atory Q	Quotati	ion No: SLR Pr	icing 2015
Comments: Methods and detection limits to suit NEPM 2013 and ANZECC2000 Lab Quotation N									on No:	Eurofins Versio	on 13.CS2											

1

SGS					C	HA	IN C	DF C	CUS	τοι	DY 8	& A1	NAL	YSI	S R	EQ	UEST	k				Page4	of5	-
SGS Environmental S	ervices	Com	npany	/ Nam	e:	SLR	Consi	Ilting							Proje	ct Nar	ne/No:	6	0.1719	1.0000	01 Pyml	ble		
Unit 16, 33 Maddox St	reet	Add	ress:			2 Lind	coln S	treet							Purch	nase C	order No:	S	GS PO	22711	Eurofi	ins PO 22712		
Alexandria NSW 2015						Lane	Cove	NSW	2066						Resu	Its Ree	quired By:	St	andard	5 day	Turnard	ound		
Telephone No: (02) 85	940400					_									Telep	hone:		04	00 882	269				
Facsimile No: (02) 8	5940499	Con	tact N	lame:		Craig	Cowp	ber							Facsi	mile:		02	9427 8	3200				
Email: au.samplereceipt.sy	dney@sgs.com	m										1			Email	Resu	lts:	<u>cc</u>	owper(Dslrco	nsulting	.com		
Client Sample ID	Date Sampled	Lab Samp ID		WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	TRH / BTEX	РАН	OCP	PCB	Metals	Asbestos (absence / presence)	Asbestos ID Building	VOC (8260)	BTEX							Notes	
TP15/0.0-0.2	06/06/17	27			X	Ice	2				X	X	X											
TP15/0.6-0.8	06/06/17	28			X	lce	2		X															
TP15/1.3-1.5	06/06/17	29			X	lce	2			X		X	X											
TP15/2.0-2.2	06/06/17	30			X	Ice	2	Х															nicial activity of the	
TP16/0.1-0.3	06/06/17	31			X	Ice	2		X				X											
TP16/0.8-1.0	06/06/17	32.			X	lce	2		X			X	X											and and address
TP16/1.4-1.6	06/06/17	33			X	Ice	2				X	X												
TP16/1.8-2.0	06/06/17	34			X	lce	2	X															and some	1
DUP01	06/06/17	35			X	lce	1		X															262
DUP01A	06/06/17	36			X	lce	1		X															C
Relinquished By: Craig Co	owper		Date	e/Time	e: 7 J	une 20)17	to	2	1		Recei	ved By	. /	a	200	/		Date	e/Time	71	blac	30	-
Relinquished By:			Date	e/Time	e:			7				Recei	ved By			/			Date	/Time	10	/	pr	<u>n</u>
Samples Intact: Yes/No			Tem	perat	ure:	Ambie	ent / C	hilled				Samp	le Coo	ler Se	ealed:	Yes	/ No		Labo	oratory	Quota	tion No: SLF	Pricing 201	5
			Com	nment	ts: Me	thods	and c	letecti	on limi	ts to s	uit NE	EPM 2	013 ar	nd AN	ZECC	2000			Lab	Quota	tion No	: Eurofins Ve	ersion 13.CS	2

*

SGS				С	HAI	N C	OF C	:US	τοε	9Y 8	AN	IAL	YSI	S R	EQI	UEST					Page	5 of5
SGS Environmental S	ervices	Compar	ny Nam	ie:	SLR (Consu	Iting							Proje	ct Nam	ne/No:	610	.17191.	00001	Pymbl	le	
Unit 16, 33 Maddox St		Address		-	2 Linc									Purch	nase O	order No:	SG	S PO 22	2711	Eurofin	ns PO 2271	2
Alexandria NSW 2015				-	Lane	Cove	NSW 2	2066						Resu	Its Rec	quired By:	Sta	ndard 5	day T	urnarou	und	
Telephone No: (02) 85	940400			-		1000								Telep	hone:		040	0 882 2	69			
Facsimile No: (02) 85		Contact	Name	-	Craig	Cowp	er							Facsi	mile:		02 9	9427 82	:00			
Email: au.samplereceipt.sy				-										Email	Resu	lts:	000	wper@s	sircons	sulting.	com	
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	TRH / BTEX	РАН	OCP	PCB	K Metals	Asbestos (absence / presence)	Asbestos ID Building Materials	VOC (8260)	BTEX			Notes				Notes
DUP02	06/06/17	31		X	Ice	1					X						_					
DUP02A	06/06/17	38		X	Ice	1		•			X											
DUP03	06/06/17	29		X	Ice	1					X											
DUP03A	06/06/17	40		X	Ice	1					X											
Trip Spike	06/06/17	41	X		Ice	1									X							
Trip Blank	06/06/17		X		Ice	1				1												Hold
Relinquished By: Craig C	owper	Da	ate/Tim	ne: 7 J	une 20	017	A	Ê			Recei	ved By	y: 🗸	Ze	12an	1		Date/	Time	7/1	has	2 3pm
Relinguished By:		Da	ate/Tim	ne:		-					Recei	ved By	y:		0			Date/	Time	10	1.	/
Samples Intact: Yes/No)	Te	empera	ature:	Ambi	ent	Chilled)			Samp	le Coc	oler Se	ealed:	Yes	/ No		Labor	atory	Quotat	tion No: SL	R Pricing 2015
		Co	ommer	nts: Me	ethods	and	detecti	on lim	its to s	suit NI	EPM 2	2013 ai	nd AN	ZEC	C2000 Lab Quotation No: Eurofins Version 13.C				/ersion 13.CS2			

Appendix D Report Number 610.17191-R02 Page 1 of 1 CALIBRATION

	PID CAI	LIBRATION LOG	
PID MODEL: MiniRae Lite PGM735	500 (10.6eV lamp)	PID SERIAL NUMBER: 595-00	00501
Date:	24/04/17	SLR Project Number:	610.17037.00001
Isobutylene Gas Lot No:	158 3028		
Isobutylene Standard (ppm):	100		
Fresh Air Cal (ppm):	Ð		
Isobutylene Cal (ppm):	(00	- 1	
SLR Consultant Signature:			
Date:	03/05/17	SLR Project Number:	610.15539_00002
Isobutylene Gas Lot No:	1583028		
Isobutylene Standard (ppm):	100		
Fresh Air Cal (ppm):	D		
Isobutylene Cal (ppm):	100		
SLR Consultant Signature:	- A	<i>V</i>	
Date:	18/05/17	SLR Project Number:	610.16928
Isobutylene Gas Lot No:	1583028		
Isobutylene Standard (ppm):	100		
Fresh Air Cal (ppm):	0		
lsobutylene Cal (ppm):	100	d	
SLR Consultant Signature:			
Date:	06/06/2017	SLR Project Number:	610.17191.00001
Isobutylene Gas Lot No:	1583028	· • • • • • • • • • • • • • • • • • • •	
Isobutylene Standard (ppm):	(00	· · · · · · · · · · · · · · · · · · ·	
Fresh Air Cal (ppm):	0		
lsobutylene Cal (ppm):	100	- 2	
SLR Consultant Signature:			